HammerScope

Yaakov Cohen, Kevin Sam Tharayil, Arie Haenel, Daniel Genkin, Angelos D. Keromytis, Yossi Oren, Y. Yarom
{"title":"HammerScope","authors":"Yaakov Cohen, Kevin Sam Tharayil, Arie Haenel, Daniel Genkin, Angelos D. Keromytis, Yossi Oren, Y. Yarom","doi":"10.1145/3548606.3560688","DOIUrl":null,"url":null,"abstract":"The constant reduction in memory cell sizes has increased memory density and reduced power consumption, but has also affected its reliability. The Rowhammer attack exploits this reduced reliability to induce bit flips in memory, without directly accessing these bits. Most Rowhammer attacks target software integrity, but some recent attacks demonstrated its use for compromising confidentiality. Continuing this trend, in this paper we observe that the \\rh attack strongly correlates with the memory instantaneous power consumption. We exploit this observation to design HammerScope, a Rowhammer-based attack technique for measuring the power consumption of the memory unit. Because the power consumption correlates with the level of activity of the memory, \\hs allows an attacker to infer memory activity. To demonstrate the offensive capabilities of HammerScope, we use it to mount three information leakage attacks. We first show that \\hs can be used to break kernel address-space layout randomization (KASLR). Our second attack uses memory activity as a covert channel for a Spectre attack, allowing us to leak information from the operating system kernel. Finally, we demonstrate the use of HammerScope for performing website fingerprinting, compromising user privacy. Our work demonstrates the importance of finding systematic solutions for Rowhammer attacks.","PeriodicalId":435197,"journal":{"name":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3548606.3560688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The constant reduction in memory cell sizes has increased memory density and reduced power consumption, but has also affected its reliability. The Rowhammer attack exploits this reduced reliability to induce bit flips in memory, without directly accessing these bits. Most Rowhammer attacks target software integrity, but some recent attacks demonstrated its use for compromising confidentiality. Continuing this trend, in this paper we observe that the \rh attack strongly correlates with the memory instantaneous power consumption. We exploit this observation to design HammerScope, a Rowhammer-based attack technique for measuring the power consumption of the memory unit. Because the power consumption correlates with the level of activity of the memory, \hs allows an attacker to infer memory activity. To demonstrate the offensive capabilities of HammerScope, we use it to mount three information leakage attacks. We first show that \hs can be used to break kernel address-space layout randomization (KASLR). Our second attack uses memory activity as a covert channel for a Spectre attack, allowing us to leak information from the operating system kernel. Finally, we demonstrate the use of HammerScope for performing website fingerprinting, compromising user privacy. Our work demonstrates the importance of finding systematic solutions for Rowhammer attacks.
HammerScope
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信