Identifying Informational vs. Conversational Questions on Community Question Answering Archives

Ido Guy, Victor Makarenkov, Niva Hazon, L. Rokach, Bracha Shapira
{"title":"Identifying Informational vs. Conversational Questions on Community Question Answering Archives","authors":"Ido Guy, Victor Makarenkov, Niva Hazon, L. Rokach, Bracha Shapira","doi":"10.1145/3159652.3159733","DOIUrl":null,"url":null,"abstract":"Questions on community question answering websites usually reflect one of two intents: learning information or starting a conversation. In this paper, we revisit this fundamental classification task of informational versus conversational questions, which was originally introduced and studied in 2009. We use a substantially larger dataset of archived questions from Yahoo Answers, which includes the question»s title, description, answers, and votes. We replicate the original experiments over this dataset, point out the common and different from the original results, and present a broad set of characteristics that distinguish the two question types. We also develop new classifiers that make use of additional data types, advanced machine learning, and a large dataset of unlabeled data, which achieve enhanced performance.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3159733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Questions on community question answering websites usually reflect one of two intents: learning information or starting a conversation. In this paper, we revisit this fundamental classification task of informational versus conversational questions, which was originally introduced and studied in 2009. We use a substantially larger dataset of archived questions from Yahoo Answers, which includes the question»s title, description, answers, and votes. We replicate the original experiments over this dataset, point out the common and different from the original results, and present a broad set of characteristics that distinguish the two question types. We also develop new classifiers that make use of additional data types, advanced machine learning, and a large dataset of unlabeled data, which achieve enhanced performance.
在社区问答档案中识别信息问题与会话问题
社区问答网站上的问题通常反映了两种目的之一:学习信息或开始对话。在本文中,我们重新审视了2009年首次引入和研究的信息与会话问题的基本分类任务。我们使用了一个更大的来自雅虎答案的存档问题数据集,其中包括问题的标题、描述、答案和投票。我们在这个数据集上复制了原始实验,指出了与原始结果的共同点和不同点,并提出了一套广泛的特征来区分这两种问题类型。我们还开发了新的分类器,这些分类器利用了额外的数据类型、高级机器学习和大量未标记数据集,从而提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信