{"title":"Broadband High Power Amplifier Design Using GaN HEMT Technology","authors":"Doğancan Turt, A. Akgiray","doi":"10.1109/ICRAMET53537.2021.9650475","DOIUrl":null,"url":null,"abstract":"This paper presents the design and measurements of a broadband GaN HEMT power amplifier intended for point-to-point radios, electronic warfare systems, and test and measurement applications. The proposed power amplifier is fabricated, and small/large-signal measurements are collected. Fabricated design is conducted for an input power of 26 dBm and obtained between 39.6 - 40.9 dBm output power. Power added efficiency (PAE) of 45.9 % to 61.4 % is reached over the band (0.5 - 2.5 GHz). In this study, Wolfspeed’s CGH40010F transistor is used in CW mode. In order to decide optimum source and load impedances of the transistor, load- & source-pull simulations are conducted. After load- & source-pull simulations, proper source and load matching networks are established to obtain optimum output power and efficiency values over the band.","PeriodicalId":269759,"journal":{"name":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET53537.2021.9650475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents the design and measurements of a broadband GaN HEMT power amplifier intended for point-to-point radios, electronic warfare systems, and test and measurement applications. The proposed power amplifier is fabricated, and small/large-signal measurements are collected. Fabricated design is conducted for an input power of 26 dBm and obtained between 39.6 - 40.9 dBm output power. Power added efficiency (PAE) of 45.9 % to 61.4 % is reached over the band (0.5 - 2.5 GHz). In this study, Wolfspeed’s CGH40010F transistor is used in CW mode. In order to decide optimum source and load impedances of the transistor, load- & source-pull simulations are conducted. After load- & source-pull simulations, proper source and load matching networks are established to obtain optimum output power and efficiency values over the band.