{"title":"Linear canonical wavelet transform: Properties and inequalities","authors":"M. Bahri, A. K. Amir, R. Ashino","doi":"10.1142/s0219691321500272","DOIUrl":null,"url":null,"abstract":"This paper deals with the linear canonical wavelet transform. It is a non-trivial generalization of the ordinary wavelet transform in the framework of the linear canonical transform. We first present a direct relationship between the linear canonical wavelet transform and ordinary wavelet transform. Based on the relation, we provide an alternative proof of the orthogonality relation for the linear canonical wavelet transform. Some of its essential properties are also studied in detail. Finally, we explicitly derive several versions of inequalities associated with the linear canonical wavelet transform.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the linear canonical wavelet transform. It is a non-trivial generalization of the ordinary wavelet transform in the framework of the linear canonical transform. We first present a direct relationship between the linear canonical wavelet transform and ordinary wavelet transform. Based on the relation, we provide an alternative proof of the orthogonality relation for the linear canonical wavelet transform. Some of its essential properties are also studied in detail. Finally, we explicitly derive several versions of inequalities associated with the linear canonical wavelet transform.