The Value of Information under Partial Information for Exponential Utility

F. J. Mhlanga, M. Dube
{"title":"The Value of Information under Partial Information for Exponential Utility","authors":"F. J. Mhlanga, M. Dube","doi":"10.31390/JOSA.1.3.01","DOIUrl":null,"url":null,"abstract":"The paper investigates the value of information to an investor under the partial information setting for exponential utility. The only information available to the investor is the one generated by the asset price processes and, in particular, the underlying appreciation rate of the risky asset cannot be observed directly. Filtering theory is used to find a filtered estimate of the underlying appreciation rate. This brings about two maximisation problems from which we determine the optimal expected utilities of wealth under partial and full information, via Hamilton-Jacobi-Bellman equations. The value of information is, therefore, calculated as the di↵erence between the two optimal expected utilities. The e↵ect of parameter changes on the value of information is determined by carrying out numerical simulations.","PeriodicalId":263604,"journal":{"name":"Journal of Stochastic Analysis","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/JOSA.1.3.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper investigates the value of information to an investor under the partial information setting for exponential utility. The only information available to the investor is the one generated by the asset price processes and, in particular, the underlying appreciation rate of the risky asset cannot be observed directly. Filtering theory is used to find a filtered estimate of the underlying appreciation rate. This brings about two maximisation problems from which we determine the optimal expected utilities of wealth under partial and full information, via Hamilton-Jacobi-Bellman equations. The value of information is, therefore, calculated as the di↵erence between the two optimal expected utilities. The e↵ect of parameter changes on the value of information is determined by carrying out numerical simulations.
指数效用的部分信息下的信息值
本文研究了在指数效用的部分信息设置下,信息对投资者的价值。投资者可以获得的唯一信息是资产价格过程产生的信息,特别是风险资产的潜在升值率无法直接观察到。过滤理论用于找到潜在升值率的过滤估计值。这带来了两个最大化问题,我们通过汉密尔顿-雅可比-贝尔曼方程确定了部分信息和完全信息下财富的最优预期效用。因此,信息的价值被计算为两个最优预期效用之间的差值。通过数值模拟确定参数变化对信息值的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信