Performance assessment of fuzzy clustering models applied to urban airborne pollution

M. Aceves-Fernández, A. Sotomayor-Olmedo, E. G. Hurtado, J. Ortega, S. Tovar-Arriaga, Juan Manuel Ramos Arreguín
{"title":"Performance assessment of fuzzy clustering models applied to urban airborne pollution","authors":"M. Aceves-Fernández, A. Sotomayor-Olmedo, E. G. Hurtado, J. Ortega, S. Tovar-Arriaga, Juan Manuel Ramos Arreguín","doi":"10.1109/CONIELECOMP.2011.5749362","DOIUrl":null,"url":null,"abstract":"An application in modeling a non-lineal system between temperature, humidity and urban airborne air pollution is presented. In this contribution, the implementation of cluster estimation method as a basis of a fuzzy model identification algorithm has been developed. Fuzzy clustering allowed partitioning this complex non-linear system into many linear sub-systems. Finally, comparison of the performance between two different clustering techniques for this particular case study is presented: Fuzzy C-means Clustering and Fuzzy Subtractive Clustering.","PeriodicalId":432662,"journal":{"name":"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2011.5749362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An application in modeling a non-lineal system between temperature, humidity and urban airborne air pollution is presented. In this contribution, the implementation of cluster estimation method as a basis of a fuzzy model identification algorithm has been developed. Fuzzy clustering allowed partitioning this complex non-linear system into many linear sub-systems. Finally, comparison of the performance between two different clustering techniques for this particular case study is presented: Fuzzy C-means Clustering and Fuzzy Subtractive Clustering.
城市大气污染模糊聚类模型的性能评价
介绍了在温度、湿度与城市空气污染非线性系统建模中的应用。在这篇贡献中,实现了聚类估计方法作为模糊模型识别算法的基础。模糊聚类可以将这个复杂的非线性系统划分为许多线性子系统。最后,本文比较了两种不同聚类技术的性能:模糊c均值聚类和模糊减法聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信