Keynote: The First-Order Logic of Signals

Alexey Bakhirkin, Thomas Ferrère, T. Henzinger, Deian Nickovicl
{"title":"Keynote: The First-Order Logic of Signals","authors":"Alexey Bakhirkin, Thomas Ferrère, T. Henzinger, Deian Nickovicl","doi":"10.1109/EMSOFT.2018.8537203","DOIUrl":null,"url":null,"abstract":"Formalizing properties of systems with continuous dynamics is a challenging task. In this paper, we propose a formal framework for specifying and monitoring rich temporal properties of real-valued signals. We introduce signal first-order logic (SFO) as a specification language that combines first-order logic with linear-real arithmetic and unary function symbols interpreted as piecewise-linear signals. We first show that while the satisfiability problem for SFO is undecidable, its membership and monitoring problems are decidable. We develop an offline monitoring procedure for SFO that has polynomial complexity in the size of the input trace and the specification, for a fixed number of quantifiers and function symbols. We show that the algorithm has computation time linear in the size of the input trace for the important fragment of bounded-response specifications interpreted over input traces with finite variability. We can use our results to extend signal temporal logic with first-order quantifiers over time and value parameters, while preserving its efficient monitoring. We finally demonstrate the practical appeal of our logic through a case study in the micro-electronics domain.","PeriodicalId":375994,"journal":{"name":"2018 International Conference on Embedded Software (EMSOFT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2018.8537203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Formalizing properties of systems with continuous dynamics is a challenging task. In this paper, we propose a formal framework for specifying and monitoring rich temporal properties of real-valued signals. We introduce signal first-order logic (SFO) as a specification language that combines first-order logic with linear-real arithmetic and unary function symbols interpreted as piecewise-linear signals. We first show that while the satisfiability problem for SFO is undecidable, its membership and monitoring problems are decidable. We develop an offline monitoring procedure for SFO that has polynomial complexity in the size of the input trace and the specification, for a fixed number of quantifiers and function symbols. We show that the algorithm has computation time linear in the size of the input trace for the important fragment of bounded-response specifications interpreted over input traces with finite variability. We can use our results to extend signal temporal logic with first-order quantifiers over time and value parameters, while preserving its efficient monitoring. We finally demonstrate the practical appeal of our logic through a case study in the micro-electronics domain.
主题演讲:信号的一阶逻辑
将连续动力学系统的性质形式化是一项具有挑战性的任务。在本文中,我们提出了一个形式化框架来指定和监测实值信号的丰富时间特性。我们引入信号一阶逻辑(SFO)作为一种规范语言,它将一阶逻辑与线性实算术和一元函数符号结合起来,解释为分段线性信号。我们首先证明了SFO的可满意性问题是不可确定的,而其成员和监控问题是可确定的。我们为SFO开发了一个离线监控程序,该程序在输入跟踪的大小和规格方面具有多项式复杂性,用于固定数量的量词和函数符号。我们表明,对于在有限可变性的输入轨迹上解释的有界响应规范的重要片段,该算法在输入轨迹的大小上具有线性计算时间。我们可以使用我们的结果来扩展信号时间逻辑随时间和值参数的一阶量化,同时保持其有效监控。最后,我们通过一个微电子领域的案例研究来证明我们的逻辑的实际吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信