{"title":"A Novel Frequency Selective Antenna for mm-Wave Phased Arrays","authors":"H. S. Farahani, B. Rezaee, H. Paulitsch, W. Bösch","doi":"10.1109/iWAT54881.2022.9811017","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel frequency selective antenna based on the distributed coupled-resonator (DCR) feeding network. The main idea is to design a high performance, compact and cost-effective antenna module with filtering functionality for mm-Wave phased arrays. The DCR structure with a simple and low-profile stack-up fabrication is effectively adopted to achieve a compact modular fourth-degree filtering antenna (Filtenna) with a steep roll-off rejection and directive radiation pattern. For demonstration, a 2×2 array of the Filtenna is separately designed and fabricated with the aim of phased array antenna fed by a Quad-channel beamformer. The experimental results of the Filtenna are well-agreed with the simulations demonstrating return-loss and realized-gain of 15 dB and 8 dBi, respectively. The proposed Filtenna array is operating at 31 GHz with bandwidth of 2 GHz (15 dB return loss) and in-phase directivity of 15.6 dBi. The proposed antenna is scalable to large arrays suitable for high gain applications like automotive radar, SATCOM and 5G.","PeriodicalId":106416,"journal":{"name":"2022 International Workshop on Antenna Technology (iWAT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iWAT54881.2022.9811017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a novel frequency selective antenna based on the distributed coupled-resonator (DCR) feeding network. The main idea is to design a high performance, compact and cost-effective antenna module with filtering functionality for mm-Wave phased arrays. The DCR structure with a simple and low-profile stack-up fabrication is effectively adopted to achieve a compact modular fourth-degree filtering antenna (Filtenna) with a steep roll-off rejection and directive radiation pattern. For demonstration, a 2×2 array of the Filtenna is separately designed and fabricated with the aim of phased array antenna fed by a Quad-channel beamformer. The experimental results of the Filtenna are well-agreed with the simulations demonstrating return-loss and realized-gain of 15 dB and 8 dBi, respectively. The proposed Filtenna array is operating at 31 GHz with bandwidth of 2 GHz (15 dB return loss) and in-phase directivity of 15.6 dBi. The proposed antenna is scalable to large arrays suitable for high gain applications like automotive radar, SATCOM and 5G.