Noisy channel adaptation in language identification

Sriram Ganapathy, M. Omar, Jason W. Pelecanos
{"title":"Noisy channel adaptation in language identification","authors":"Sriram Ganapathy, M. Omar, Jason W. Pelecanos","doi":"10.1109/SLT.2012.6424241","DOIUrl":null,"url":null,"abstract":"Language identification (LID) of speech data recorded over noisy communication channels is a challenging problem especially when the LID system is tested on speech data from an unseen communication channel (not seen in training). In this paper, we consider the scenario in which a small amount of adaptation data is available from a new communication channel. Various approaches are investigated for efficient utilization of the adaptation data in a supervised as well as unsupervised setting. In a supervised adaptation framework, we show that support vector machines (SVMs) with higher order polynomial kernels (HO-SVM) trained using lower dimensional representations of the the Gaussian mixture model supervectors (GSVs) provide significant performance improvements over the baseline SVM-GSV system. In these LID experiments, we obtain 30% reduction in error-rate with 6 hours of adaptation data for a new channel. For unsupervised adaptation, we develop an iterative procedure for re-labeling the development data using a co-training framework. In these experiments, we obtain considerable improvements(relative improvements of 13 %) over a self-training framework with the HO-SVM models.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Language identification (LID) of speech data recorded over noisy communication channels is a challenging problem especially when the LID system is tested on speech data from an unseen communication channel (not seen in training). In this paper, we consider the scenario in which a small amount of adaptation data is available from a new communication channel. Various approaches are investigated for efficient utilization of the adaptation data in a supervised as well as unsupervised setting. In a supervised adaptation framework, we show that support vector machines (SVMs) with higher order polynomial kernels (HO-SVM) trained using lower dimensional representations of the the Gaussian mixture model supervectors (GSVs) provide significant performance improvements over the baseline SVM-GSV system. In these LID experiments, we obtain 30% reduction in error-rate with 6 hours of adaptation data for a new channel. For unsupervised adaptation, we develop an iterative procedure for re-labeling the development data using a co-training framework. In these experiments, we obtain considerable improvements(relative improvements of 13 %) over a self-training framework with the HO-SVM models.
语言识别中的噪声信道适应
语言识别(LID)是一个具有挑战性的问题,特别是当LID系统测试来自未知通信信道的语音数据时(在训练中未见过)。在本文中,我们考虑了从一个新的通信通道中获得少量自适应数据的场景。研究了在有监督和无监督环境下有效利用自适应数据的各种方法。在监督自适应框架中,我们发现使用高斯混合模型超向量(GSVs)的低维表示训练高阶多项式核(HO-SVM)的支持向量机(svm)比基线SVM-GSV系统提供了显着的性能改进。在这些LID实验中,我们用6小时的新信道自适应数据将错误率降低了30%。对于无监督适应,我们开发了一个迭代过程,使用共同训练框架重新标记开发数据。在这些实验中,与使用HO-SVM模型的自训练框架相比,我们获得了相当大的改进(相对改进13%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信