Recognition of Human Actions Using Motion Capture Data and Support Vector Machine

Jung-Ying Wang, Hahn-Ming Lee
{"title":"Recognition of Human Actions Using Motion Capture Data and Support Vector Machine","authors":"Jung-Ying Wang, Hahn-Ming Lee","doi":"10.1109/WCSE.2009.354","DOIUrl":null,"url":null,"abstract":"This paper presents a human action recognition system based on motion capture features and support vector machine (SVM). We use 43 optical markers distributing on body and extremities to track the movement of human actions. In our system 21 different types of action are recognized. Applying SVM for the recognition of human action the overall prediction accuracy achieves to 84.1% when using the three-fold cross validation on the training set. Another purpose of this study is to find out which skeleton points are important for human action recognition. The experimental results show that the skeleton points of head, hands and feet are the most important features for recognition of human actions.","PeriodicalId":331155,"journal":{"name":"2009 WRI World Congress on Software Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 WRI World Congress on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSE.2009.354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper presents a human action recognition system based on motion capture features and support vector machine (SVM). We use 43 optical markers distributing on body and extremities to track the movement of human actions. In our system 21 different types of action are recognized. Applying SVM for the recognition of human action the overall prediction accuracy achieves to 84.1% when using the three-fold cross validation on the training set. Another purpose of this study is to find out which skeleton points are important for human action recognition. The experimental results show that the skeleton points of head, hands and feet are the most important features for recognition of human actions.
基于动作捕捉数据和支持向量机的人体动作识别
提出了一种基于动作捕捉特征和支持向量机的人体动作识别系统。我们使用分布在身体和四肢上的43个光学标记来跟踪人类动作的运动。在我们的系统中,21种不同类型的动作被识别。将支持向量机用于人体动作识别,在训练集上使用三重交叉验证时,整体预测准确率达到84.1%。本研究的另一个目的是找出哪些骨骼点对人体动作识别是重要的。实验结果表明,头、手、脚的骨骼点是人体动作识别的重要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信