Markov chain existence and Hidden Markov models in spectrum sensing

Chittabrata Ghosh, C. Cordeiro, D. Agrawal, M. B. Rao
{"title":"Markov chain existence and Hidden Markov models in spectrum sensing","authors":"Chittabrata Ghosh, C. Cordeiro, D. Agrawal, M. B. Rao","doi":"10.1109/PERCOM.2009.4912868","DOIUrl":null,"url":null,"abstract":"The primary function of a cognitive radio is to detect idle frequencies or sub-bands, not used by the primary users (PUs), and allocate these frequencies to secondary users. The state of the sub-band at any time point is either free (unoccupied by a PU) or busy (occupied by a PU). The states of a sub-band are monitored over L consecutive time periods, where each period is of a given time interval. Existing research assume the presence of a Markov chain for sub-band utilization by PUs over time, but this assumption has not been validated. Therefore, in this paper we validate existence of a Markov chain for sub-band utilization using real-time measurements collected in the paging band (928–948 MHz). Furthermore, since the detection of idle sub-bands by a cognitive radio is prone to errors, we probabilistically model the errors and then formulate a spectrum sensing paradigm as a Hidden Markov model that predicts the true states of a sub-band. The accuracy of our proposed method in predicting the true states of the sub-band is substantiated using extensive simulations.","PeriodicalId":322416,"journal":{"name":"2009 IEEE International Conference on Pervasive Computing and Communications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2009.4912868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 155

Abstract

The primary function of a cognitive radio is to detect idle frequencies or sub-bands, not used by the primary users (PUs), and allocate these frequencies to secondary users. The state of the sub-band at any time point is either free (unoccupied by a PU) or busy (occupied by a PU). The states of a sub-band are monitored over L consecutive time periods, where each period is of a given time interval. Existing research assume the presence of a Markov chain for sub-band utilization by PUs over time, but this assumption has not been validated. Therefore, in this paper we validate existence of a Markov chain for sub-band utilization using real-time measurements collected in the paging band (928–948 MHz). Furthermore, since the detection of idle sub-bands by a cognitive radio is prone to errors, we probabilistically model the errors and then formulate a spectrum sensing paradigm as a Hidden Markov model that predicts the true states of a sub-band. The accuracy of our proposed method in predicting the true states of the sub-band is substantiated using extensive simulations.
频谱感知中的马尔可夫链存在和隐马尔可夫模型
认知无线电的主要功能是检测主用户(pu)未使用的空闲频率或子频段,并将这些频率分配给辅助用户。子带在任意时间点的状态为空闲(未被某个PU占用)或繁忙(被某个PU占用)。在L个连续时间段内监测子带的状态,其中每个时间段具有给定的时间间隔。现有的研究假设随着时间的推移,pu的子带利用存在马尔可夫链,但这一假设尚未得到验证。因此,在本文中,我们使用在寻呼频段(928-948 MHz)收集的实时测量验证了子频段利用率的马尔可夫链的存在性。此外,由于认知无线电对空闲子带的检测容易出现错误,我们对这些错误进行概率建模,然后将频谱感知范式制定为预测子带真实状态的隐马尔可夫模型。我们提出的方法在预测子带真实状态方面的准确性通过大量的模拟得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信