Using source code metrics to predict change-prone web services: A case-study on ebay services

L. Kumar, S. K. Rath, A. Sureka
{"title":"Using source code metrics to predict change-prone web services: A case-study on ebay services","authors":"L. Kumar, S. K. Rath, A. Sureka","doi":"10.1109/MALTESQUE.2017.7882009","DOIUrl":null,"url":null,"abstract":"Predicting change-prone object-oriented software using source code metrics is an area that has attracted several researchers attention. However, predicting change-prone web services in terms of changes in the WSDL (Web Service Description Language) Interface using source code metrics implementing the services is a relatively unexplored area. We conduct a case-study on change proneness prediction on an experimental dataset consisting of several versions of eBay web services wherein we compute the churn between different versions of the WSDL interfaces using the WSDLDiff Tool. We compute 21 source code metrics using Chidamber and Kemerer Java Metrics (CKJM) extended tool serving as predictors and apply Least Squares Support Vector Machines (LSSVM) based technique to develop a change proneness estimator. Our experimental results demonstrates that a predictive model developed using all 21 metrics and linear kernel yields the best results.","PeriodicalId":153927,"journal":{"name":"2017 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MALTESQUE.2017.7882009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Predicting change-prone object-oriented software using source code metrics is an area that has attracted several researchers attention. However, predicting change-prone web services in terms of changes in the WSDL (Web Service Description Language) Interface using source code metrics implementing the services is a relatively unexplored area. We conduct a case-study on change proneness prediction on an experimental dataset consisting of several versions of eBay web services wherein we compute the churn between different versions of the WSDL interfaces using the WSDLDiff Tool. We compute 21 source code metrics using Chidamber and Kemerer Java Metrics (CKJM) extended tool serving as predictors and apply Least Squares Support Vector Machines (LSSVM) based technique to develop a change proneness estimator. Our experimental results demonstrates that a predictive model developed using all 21 metrics and linear kernel yields the best results.
使用源代码度量来预测易变的web服务:ebay服务的案例研究
使用源代码度量来预测易发生变化的面向对象软件是一个吸引了许多研究人员注意的领域。然而,根据WSDL (web服务描述语言)接口的变化,使用实现服务的源代码度量来预测容易发生变化的web服务是一个相对未开发的领域。我们在一个由几个版本的eBay web服务组成的实验数据集上进行了一个关于变更倾向预测的案例研究,其中我们使用WSDLDiff工具计算了不同版本的WSDL接口之间的变动。我们使用Chidamber和Kemerer Java metrics (CKJM)扩展工具作为预测器计算了21个源代码度量,并应用基于最小二乘支持向量机(LSSVM)的技术开发了一个变化倾向估计器。我们的实验结果表明,使用所有21个指标和线性核开发的预测模型产生了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信