Improving the Spatial Keyword Preference Query with Linked Open Data

João Paulo Dias de Almeida, F. Durão
{"title":"Improving the Spatial Keyword Preference Query with Linked Open Data","authors":"João Paulo Dias de Almeida, F. Durão","doi":"10.5753/WEBMEDIA.2018.4551","DOIUrl":null,"url":null,"abstract":"This paper presents a Spatial Keyword Preference Query (SKPQ) enhanced by Linked Open Data. This query selects objects based on the textual description of features in their neighborhood. The spatial relationship between objects and features is explored by the SKPQ using a Spatial Inverted Index. In our approach, the spatial relationship is explored using SPARQL. However, the main benefit of using SPARQL is obtained by measuring the textual relevance between features’ description and user’s keywords. The object description in Linked Open Data is much richer than traditional spatial databases, which leads to a more precise similarity measure than the one employed in the traditional SKPQ. We present an enhanced SKPQ and two experimental evaluations of the proposed approach, comparing it with the traditional SKPQ. The first conducted experiment indicate a relative NDCG improvement of the proposed approach over the traditional SKPQ of 20% when using random query keywords. The second experiment shows that using real query keywords, our approach obtained a significant increase in the MAP score.","PeriodicalId":314723,"journal":{"name":"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web","volume":"os-35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXIV Simpósio Brasileiro de Sistemas Multimídia e Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/WEBMEDIA.2018.4551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a Spatial Keyword Preference Query (SKPQ) enhanced by Linked Open Data. This query selects objects based on the textual description of features in their neighborhood. The spatial relationship between objects and features is explored by the SKPQ using a Spatial Inverted Index. In our approach, the spatial relationship is explored using SPARQL. However, the main benefit of using SPARQL is obtained by measuring the textual relevance between features’ description and user’s keywords. The object description in Linked Open Data is much richer than traditional spatial databases, which leads to a more precise similarity measure than the one employed in the traditional SKPQ. We present an enhanced SKPQ and two experimental evaluations of the proposed approach, comparing it with the traditional SKPQ. The first conducted experiment indicate a relative NDCG improvement of the proposed approach over the traditional SKPQ of 20% when using random query keywords. The second experiment shows that using real query keywords, our approach obtained a significant increase in the MAP score.
基于链接开放数据的空间关键字偏好查询改进
提出了一种基于关联开放数据的空间关键字偏好查询(SKPQ)。该查询根据其邻域特征的文本描述选择对象。SKPQ使用空间倒排索引来探索对象和特征之间的空间关系。在我们的方法中,使用SPARQL探索空间关系。然而,使用SPARQL的主要好处是通过度量特征描述和用户关键字之间的文本相关性获得的。关联开放数据中的对象描述比传统的空间数据库丰富得多,这使得相似性度量比传统的SKPQ更精确。我们提出了一个改进的SKPQ,并对该方法进行了两次实验评估,将其与传统的SKPQ进行了比较。第一次进行的实验表明,当使用随机查询关键字时,该方法的NDCG相对于传统的SKPQ提高了20%。第二个实验表明,使用真实的查询关键字,我们的方法获得了MAP分数的显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信