Interference coordination for the return link of a multibeam satellite system

Ui Yi Ng, A. Kyrgiazos, B. Evans
{"title":"Interference coordination for the return link of a multibeam satellite system","authors":"Ui Yi Ng, A. Kyrgiazos, B. Evans","doi":"10.1109/ASMS-SPSC.2014.6934569","DOIUrl":null,"url":null,"abstract":"Future internet demands are being increased dramatically year by year. Terrestrial systems are unable to satisfy these demands in all geographical areas and thus broadband access by satellite is a key service provision platform. Considering the traffic demands, the raw capacity should approach a Terabit/s by 2020 to meet these demands. The satellite communications network will be a star-based topology, where User Terminals (UT) from multiple beams communicate via central Gateway Earth Stations (GES). The return link from UT to satellite will use DVB-RCS2 Multi-Frequency Time Division Multiple Access (MF-TDMA) transmission scheme in Ka band (30GHz), while the return feeder link from satellite to GES in Q band (40 GHz). Due to generation of large number of narrow user beams, the interference starts becoming a limiting factor in the system's dimensioning. Herein, interference coordination schemes, borrowed from terrestrial cellular systems, are examined in terms of applicability and C/I performance. In addition, an algorithm for dynamic interference coordination is proposed to schedule the transmissions of the users in time-frequency domain of the return link, aiming to improve the C/I. The performance of these schemes and the proposed algorithm is assessed over a 302 user beams satellite system with practical antenna radiation patterns.","PeriodicalId":192172,"journal":{"name":"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing for Space Communications Workshop (ASMS/SPSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMS-SPSC.2014.6934569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Future internet demands are being increased dramatically year by year. Terrestrial systems are unable to satisfy these demands in all geographical areas and thus broadband access by satellite is a key service provision platform. Considering the traffic demands, the raw capacity should approach a Terabit/s by 2020 to meet these demands. The satellite communications network will be a star-based topology, where User Terminals (UT) from multiple beams communicate via central Gateway Earth Stations (GES). The return link from UT to satellite will use DVB-RCS2 Multi-Frequency Time Division Multiple Access (MF-TDMA) transmission scheme in Ka band (30GHz), while the return feeder link from satellite to GES in Q band (40 GHz). Due to generation of large number of narrow user beams, the interference starts becoming a limiting factor in the system's dimensioning. Herein, interference coordination schemes, borrowed from terrestrial cellular systems, are examined in terms of applicability and C/I performance. In addition, an algorithm for dynamic interference coordination is proposed to schedule the transmissions of the users in time-frequency domain of the return link, aiming to improve the C/I. The performance of these schemes and the proposed algorithm is assessed over a 302 user beams satellite system with practical antenna radiation patterns.
多波束卫星系统返回链路的干扰协调
未来的互联网需求正逐年急剧增长。地面系统无法满足所有地理区域的这些需求,因此卫星宽带接入是一个关键的业务提供平台。考虑到流量需求,到2020年,原始容量应接近1太比特/秒,以满足这些需求。卫星通信网络将采用星型拓扑结构,其中来自多个波束的用户终端(UT)通过中央网关地面站(GES)进行通信。从UT到卫星的返回链路将采用Ka频段(30GHz)的DVB-RCS2多频时分多址(MF-TDMA)传输方案,而从卫星到GES的返回馈线链路将采用Q频段(40ghz)。由于产生大量的窄用户波束,干扰开始成为系统尺寸的限制因素。本文对借鉴地面蜂窝系统的干扰协调方案的适用性和C/I性能进行了研究。此外,提出了一种动态干扰协调算法,在回程链路时频域对用户的传输进行调度,以提高C/I。在具有实际天线辐射方向图的302用户波束卫星系统上对这些方案和算法的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信