Computing optical flow in resistive networks and in the primate visual system

C. Koch, H. T. Wang, B. Mathur, A. Hsu, Humbert Suarez
{"title":"Computing optical flow in resistive networks and in the primate visual system","authors":"C. Koch, H. T. Wang, B. Mathur, A. Hsu, Humbert Suarez","doi":"10.1109/WVM.1989.47095","DOIUrl":null,"url":null,"abstract":"It is shown how the well-known algorithm of B. Horn and B.C. Schunk (1981) for computing optical flow, based on minimizing a quadratic functional using a relaxation scheme, maps onto two different kinds of massive parallel hardware: either resistive networks which are attractive for their technological potential, or neuronal networks related to the ones occurring in the motion pathway in the primate's visual system. If the x and y components of the motion field are coded explicitly as voltages within electrical circuits, simple resistive networks solve for the optical flow in the presence of motion discontinuities. These networks are being implemented into analog, subthreshold CMOS VLSI (complementary metal oxide semiconductor very large-scale integration) circuits. If velocity is represented within a population of direction selective cells, the resulting neuronal network maps onto the primate's striate and extrastriate visual cortex (middle temporal area). The performance of the network mimicks a large number of psychological illusions as well as electrophysical findings.<<ETX>>","PeriodicalId":342419,"journal":{"name":"[1989] Proceedings. Workshop on Visual Motion","volume":"646 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1989] Proceedings. Workshop on Visual Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WVM.1989.47095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

It is shown how the well-known algorithm of B. Horn and B.C. Schunk (1981) for computing optical flow, based on minimizing a quadratic functional using a relaxation scheme, maps onto two different kinds of massive parallel hardware: either resistive networks which are attractive for their technological potential, or neuronal networks related to the ones occurring in the motion pathway in the primate's visual system. If the x and y components of the motion field are coded explicitly as voltages within electrical circuits, simple resistive networks solve for the optical flow in the presence of motion discontinuities. These networks are being implemented into analog, subthreshold CMOS VLSI (complementary metal oxide semiconductor very large-scale integration) circuits. If velocity is represented within a population of direction selective cells, the resulting neuronal network maps onto the primate's striate and extrastriate visual cortex (middle temporal area). The performance of the network mimicks a large number of psychological illusions as well as electrophysical findings.<>
计算电阻网络和灵长类视觉系统中的光流
它展示了B. Horn和bc . Schunk(1981)计算光流的著名算法是如何基于使用松弛方案最小化二次函数,映射到两种不同类型的大规模并行硬件上的:要么是因其技术潜力而具有吸引力的电阻网络,要么是与灵长类动物视觉系统中运动路径相关的神经网络。如果运动场的x和y分量被明确地编码为电路中的电压,那么简单的电阻网络就可以解决存在运动不连续的光流问题。这些网络被应用到模拟、亚阈值CMOS VLSI(互补金属氧化物半导体非常大规模集成)电路中。如果速度在一群方向选择细胞中表现出来,那么由此产生的神经网络就会映射到灵长类动物的纹状和纹状外视觉皮层(中颞区)。该网络的表现模仿了大量的心理错觉以及电物理发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信