{"title":"Improved tracking of maneuvering targets: the use of turn-rate distributions for acceleration modeling","authors":"J. P. Helferty","doi":"10.1109/MFI.1994.398410","DOIUrl":null,"url":null,"abstract":"Tactically maneuvering targets are difficult to track since acceleration cannot be observed directly and the accelerations are induced by human control or an autonomous guidance system; therefore they are not subject to deterministic models. A common tracking system is the two-state Kalman Filter with a Singer maneuver model where the second order statistics of acceleration is the same as a first order Markov process. The Singer model assumes a uniform probability distribution on the target's acceleration which is independent of the x and y direction. In practice, it is expected that targets have constant forward speed and an acceleration vector normal to the velocity vector, a condition not present in the Singer model. This paper extends the work of Singer by presenting a maneuver model which assumes constant forward speed and a probability distribution on the targets turn-rate. Details of the model are presented along with sample simulation results.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
Tactically maneuvering targets are difficult to track since acceleration cannot be observed directly and the accelerations are induced by human control or an autonomous guidance system; therefore they are not subject to deterministic models. A common tracking system is the two-state Kalman Filter with a Singer maneuver model where the second order statistics of acceleration is the same as a first order Markov process. The Singer model assumes a uniform probability distribution on the target's acceleration which is independent of the x and y direction. In practice, it is expected that targets have constant forward speed and an acceleration vector normal to the velocity vector, a condition not present in the Singer model. This paper extends the work of Singer by presenting a maneuver model which assumes constant forward speed and a probability distribution on the targets turn-rate. Details of the model are presented along with sample simulation results.<>