{"title":"Customized MPSoC synthesis for task sequence","authors":"Liang Chen, Nicolas Boichat, T. Mitra","doi":"10.1109/SASP.2011.5941072","DOIUrl":null,"url":null,"abstract":"Multiprocessor System-on-Chip (MPSoC) platforms have become increasingly popular for high-performance embedded applications. Each processing element (PE) on such platforms can be tuned to match the computational demands of the tasks executing on it, creating a heterogeneous multiprocessor system. Extensible processor cores, where the base instruction-set architecture can be augmented with application-specific custom instructions, have recently emerged as flexible building blocks for heterogeneous MPSoC platforms. However, the customization of the different PEs has to be carried out in a synergistic manner so as to create an optimal system. In this work, we propose a pseudo-polynomial time algorithm to design the most resource-efficient customized MPSoC platform for mapping linear task graphs representing streaming applications, under deadline constraints. Experimental validation with MP3 encoder and MPEG-2 encoder applications confirms the efficiency of our approach.","PeriodicalId":375788,"journal":{"name":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2011.5941072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Multiprocessor System-on-Chip (MPSoC) platforms have become increasingly popular for high-performance embedded applications. Each processing element (PE) on such platforms can be tuned to match the computational demands of the tasks executing on it, creating a heterogeneous multiprocessor system. Extensible processor cores, where the base instruction-set architecture can be augmented with application-specific custom instructions, have recently emerged as flexible building blocks for heterogeneous MPSoC platforms. However, the customization of the different PEs has to be carried out in a synergistic manner so as to create an optimal system. In this work, we propose a pseudo-polynomial time algorithm to design the most resource-efficient customized MPSoC platform for mapping linear task graphs representing streaming applications, under deadline constraints. Experimental validation with MP3 encoder and MPEG-2 encoder applications confirms the efficiency of our approach.