A soft-sensing method for corn composition content using NIRS and LS-SVR

Xiaoh Wang
{"title":"A soft-sensing method for corn composition content using NIRS and LS-SVR","authors":"Xiaoh Wang","doi":"10.1109/CCDC.2009.5191976","DOIUrl":null,"url":null,"abstract":"A soft-sensing method for oil, protein and starch content in the corn is developed using near-infrared reflectance spectroscopy(NIRS) and least square support vector regression(LS-SVR) techniques, and the feasibility of using different NIR spectrometers for analysis is also examined. Firstly, 90 corn samples are scanned using NIR spectrometers. Then, the original NIRS are processed with multiplicative scatter correction(MSC), Savitzky-Golay second derivative analysis and principal component analysis(PCA). Finally, the soft-sensing model for corn composition content is built using LS-SVR algorithm. The research results show that correlation coefficient (Rc) of NIRS calibrated and actual oil, protein and starch content measured by chemical method are 0.947, 0.969 and 0.948 respectively. It is proved that soft-sensing method has strong robustness for agricultural products.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5191976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A soft-sensing method for oil, protein and starch content in the corn is developed using near-infrared reflectance spectroscopy(NIRS) and least square support vector regression(LS-SVR) techniques, and the feasibility of using different NIR spectrometers for analysis is also examined. Firstly, 90 corn samples are scanned using NIR spectrometers. Then, the original NIRS are processed with multiplicative scatter correction(MSC), Savitzky-Golay second derivative analysis and principal component analysis(PCA). Finally, the soft-sensing model for corn composition content is built using LS-SVR algorithm. The research results show that correlation coefficient (Rc) of NIRS calibrated and actual oil, protein and starch content measured by chemical method are 0.947, 0.969 and 0.948 respectively. It is proved that soft-sensing method has strong robustness for agricultural products.
基于近红外光谱和LS-SVR的玉米成分含量软测量方法
利用近红外光谱(NIRS)和最小二乘支持向量回归(LS-SVR)技术,建立了玉米中油脂、蛋白质和淀粉含量的软测量方法,并探讨了不同近红外光谱仪分析玉米油脂、蛋白质和淀粉含量的可行性。首先,用近红外光谱仪对90个玉米样品进行扫描。然后,对原始近红外光谱进行乘法散射校正(MSC)、Savitzky-Golay二阶导数分析和主成分分析(PCA)。最后,利用LS-SVR算法建立玉米成分含量软测量模型。研究结果表明,近红外光谱校正与化学法测定的油脂、蛋白质和淀粉含量的相关系数(Rc)分别为0.947、0.969和0.948。实验证明,软测量方法对农产品具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信