The effect of discretization on the mean geometry of a 2D random field

H. Biermé, A. Desolneux
{"title":"The effect of discretization on the mean geometry of a 2D random field","authors":"H. Biermé, A. Desolneux","doi":"10.5802/ahl.103","DOIUrl":null,"url":null,"abstract":"The study of the geometry of excursion sets of 2D random fields is a question of interest from both the theoretical and the applied viewpoints. In this paper we are interested in the relationship between the perimeter (resp. the total curvature, related to the Euler characteristic by Gauss-Bonnet Theorem) of the excursion sets of a function and the ones of its discretization. Our approach is a weak framework in which we consider the functions that map the level of the excursion set to the perimeter (resp. the total curvature) of the excursion set. We will be also interested in a stochastic framework in which the sets are the excursion sets of 2D random fields. We show in particular that, in expectation, under some stationarity and isotropy conditions on the random field, the perimeter is always biased (with a 4/π factor), whereas the total curvature is not. We illustrate all our results on different examples of random fields.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The study of the geometry of excursion sets of 2D random fields is a question of interest from both the theoretical and the applied viewpoints. In this paper we are interested in the relationship between the perimeter (resp. the total curvature, related to the Euler characteristic by Gauss-Bonnet Theorem) of the excursion sets of a function and the ones of its discretization. Our approach is a weak framework in which we consider the functions that map the level of the excursion set to the perimeter (resp. the total curvature) of the excursion set. We will be also interested in a stochastic framework in which the sets are the excursion sets of 2D random fields. We show in particular that, in expectation, under some stationarity and isotropy conditions on the random field, the perimeter is always biased (with a 4/π factor), whereas the total curvature is not. We illustrate all our results on different examples of random fields.
离散化对二维随机场平均几何形状的影响
二维随机场偏移集几何的研究是一个从理论和应用的角度都感兴趣的问题。在本文中,我们感兴趣的是周长(p。一个函数的偏移集及其离散化的偏移集的总曲率(由高斯-邦尼特定理与欧拉特性有关)。我们的方法是一个弱框架,在这个框架中,我们考虑将偏移集的水平映射到周长的函数。(偏移集的总曲率)。我们还将对一个随机框架感兴趣,其中的集合是二维随机场的偏移集。我们特别表明,在期望中,在随机场的一些平稳性和各向同性条件下,周长总是有偏的(带有4/π因子),而总曲率则不是。我们用不同的随机场的例子来说明我们所有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信