Deterministic Abortable Mutual Exclusion with Sublogarithmic Adaptive RMR Complexity

A. Alon, Adam Morrison
{"title":"Deterministic Abortable Mutual Exclusion with Sublogarithmic Adaptive RMR Complexity","authors":"A. Alon, Adam Morrison","doi":"10.1145/3212734.3212759","DOIUrl":null,"url":null,"abstract":"We present a deterministic abortable mutual exclusion algorithm for a cache-coherent (CC) model with read, write, Fetch-And-Add (F&A), and CAS primitives, whose RMR complexity is O(log_W N) , where W is the size of the F&A registers. Under the standard assumption of W=Θ(log N), our algorithm's RMR complexity is Olog N/log log N); if W=Θ(N^ε), for 0 < ε < 1 (as is the case in real multiprocessor machines), the RMR complexity is O(1). Our algorithm is adaptive to the number of processes that abort. In particular, if no process aborts during a passage, its RMR cost is O(1).","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a deterministic abortable mutual exclusion algorithm for a cache-coherent (CC) model with read, write, Fetch-And-Add (F&A), and CAS primitives, whose RMR complexity is O(log_W N) , where W is the size of the F&A registers. Under the standard assumption of W=Θ(log N), our algorithm's RMR complexity is Olog N/log log N); if W=Θ(N^ε), for 0 < ε < 1 (as is the case in real multiprocessor machines), the RMR complexity is O(1). Our algorithm is adaptive to the number of processes that abort. In particular, if no process aborts during a passage, its RMR cost is O(1).
具有次对数自适应RMR复杂度的确定性可终止互斥
我们提出了一个具有读、写、取和添加(F&A)和CAS原语的缓存一致(CC)模型的确定性可终止互斥算法,其RMR复杂度为O(log_W N),其中W是F&A寄存器的大小。在W=Θ(log N)的标准假设下,我们算法的RMR复杂度为logn /log log N);如果W=Θ(N^ε),对于0 < ε < 1(如实际多处理器机器中的情况),RMR复杂度为O(1)。我们的算法是自适应的进程中止的数量。特别是,如果在一个通道中没有进程终止,则其RMR成本为0(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信