Learning to Navigate the Energy Landscape

Julien P. C. Valentin, Angela Dai, M. Nießner, Pushmeet Kohli, Philip H. S. Torr, S. Izadi, Cem Keskin
{"title":"Learning to Navigate the Energy Landscape","authors":"Julien P. C. Valentin, Angela Dai, M. Nießner, Pushmeet Kohli, Philip H. S. Torr, S. Izadi, Cem Keskin","doi":"10.1109/3DV.2016.41","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel, general, and efficient architecture for addressing computer vision problems that are approached from an 'Analysis by Synthesis' standpoint. Analysis by synthesis involves the minimization of reconstruction error, which is typically a non-convex function of the latent target variables. State-of-the-art methods adopt a hybrid scheme where discriminatively trained predictors like Random Forests or Convolutional Neural Networks are used to initialize local search algorithms. While these hybrid methods have been shown to produce promising results, they often get stuck in local optima. Our method goes beyond the conventional hybrid architecture by not only proposing multiple accurate initial solutions but by also defining a navigational structure over the solution space that can be used for extremely efficient gradient-free local search. We demonstrate the efficacy and generalizability of our approach on tasks as diverse as Hand Pose Estimation, RGB Camera Relocalization, and Image Retrieval.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

Abstract

In this paper, we present a novel, general, and efficient architecture for addressing computer vision problems that are approached from an 'Analysis by Synthesis' standpoint. Analysis by synthesis involves the minimization of reconstruction error, which is typically a non-convex function of the latent target variables. State-of-the-art methods adopt a hybrid scheme where discriminatively trained predictors like Random Forests or Convolutional Neural Networks are used to initialize local search algorithms. While these hybrid methods have been shown to produce promising results, they often get stuck in local optima. Our method goes beyond the conventional hybrid architecture by not only proposing multiple accurate initial solutions but by also defining a navigational structure over the solution space that can be used for extremely efficient gradient-free local search. We demonstrate the efficacy and generalizability of our approach on tasks as diverse as Hand Pose Estimation, RGB Camera Relocalization, and Image Retrieval.
学会驾驭能源格局
在本文中,我们提出了一种新颖、通用、高效的架构,用于从“综合分析”的角度解决计算机视觉问题。综合分析涉及到重构误差的最小化,重构误差通常是潜在目标变量的非凸函数。最先进的方法采用混合方案,其中使用随机森林或卷积神经网络等判别训练的预测器来初始化局部搜索算法。虽然这些混合方法已被证明能产生有希望的结果,但它们经常陷入局部最优状态。我们的方法超越了传统的混合架构,不仅提出了多个精确的初始解,而且还定义了解决方案空间上的导航结构,可以用于非常有效的无梯度局部搜索。我们证明了我们的方法在各种任务上的有效性和普遍性,如手部姿势估计,RGB相机重新定位和图像检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信