Plant syndrome recognition by Gigapixel Image using Convolutional Neural Network

C. Saravanakumar, P. Senthilvel, D. Thirupurasundari, P. Periyasamy, K. Vijayakumar
{"title":"Plant syndrome recognition by Gigapixel Image using Convolutional Neural Network","authors":"C. Saravanakumar, P. Senthilvel, D. Thirupurasundari, P. Periyasamy, K. Vijayakumar","doi":"10.4108/EAI.16-5-2020.2304207","DOIUrl":null,"url":null,"abstract":". The plants play a vital role in our day-to-day life. It is important to monitor the health of the plants. Generally, plant diseases are identified using image processing techniques. In those techniques, the input images of plants are of an only megapixel size. In this method image processing of plants is done using a gigapixel input image that covers the entire area of the crop. To process this huge gigapixel image a method called Neural Image Compression(NIC) is used. The identification of the plant diseases is done using Convolutional Neural Networks(CNN) from the neutrally compressed gigapixel image. CNN is trained using a probability estimation algorithm to identify the affected portion of the plant crop.","PeriodicalId":274686,"journal":{"name":"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fist International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16-17 May 2020, Chennai, India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/EAI.16-5-2020.2304207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

. The plants play a vital role in our day-to-day life. It is important to monitor the health of the plants. Generally, plant diseases are identified using image processing techniques. In those techniques, the input images of plants are of an only megapixel size. In this method image processing of plants is done using a gigapixel input image that covers the entire area of the crop. To process this huge gigapixel image a method called Neural Image Compression(NIC) is used. The identification of the plant diseases is done using Convolutional Neural Networks(CNN) from the neutrally compressed gigapixel image. CNN is trained using a probability estimation algorithm to identify the affected portion of the plant crop.
基于卷积神经网络的植物综合征千兆像素图像识别
. 植物在我们的日常生活中起着至关重要的作用。监测植物的健康状况是很重要的。一般来说,植物病害是利用图像处理技术来识别的。在这些技术中,植物的输入图像只有百万像素大小。在这种方法中,植物的图像处理是使用覆盖整个作物区域的十亿像素输入图像完成的。为了处理这个巨大的十亿像素图像,使用了一种称为神经图像压缩(NIC)的方法。植物病害的识别使用卷积神经网络(CNN)从中性压缩的十亿像素图像中完成。CNN使用概率估计算法进行训练,以识别植物作物的受影响部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信