Hierarchical Positional Approach for ETA Prediction

Tomoki Saito, Shinichi Tanimoto, Fumihiko Takahashi
{"title":"Hierarchical Positional Approach for ETA Prediction","authors":"Tomoki Saito, Shinichi Tanimoto, Fumihiko Takahashi","doi":"10.1145/3474717.3488240","DOIUrl":null,"url":null,"abstract":"The GISCUP 2021 focuses on estimated time of arrival (ETA) which is widely used in various industries such as Transportation and Mobility. In this paper, we describe the 6th-place-solution that uses positional features hierarchically from wide to narrow and other statistical features for predictions with GBDT. Especially for narrow features, graph-embedding features are generated by extending node2vec to make it easier to handle large amounts of data. This solution got MAPE score of 12.478 as the final score.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3488240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The GISCUP 2021 focuses on estimated time of arrival (ETA) which is widely used in various industries such as Transportation and Mobility. In this paper, we describe the 6th-place-solution that uses positional features hierarchically from wide to narrow and other statistical features for predictions with GBDT. Especially for narrow features, graph-embedding features are generated by extending node2vec to make it easier to handle large amounts of data. This solution got MAPE score of 12.478 as the final score.
ETA预测的层次定位方法
GISCUP 2021的重点是预计到达时间(ETA),广泛应用于交通运输和移动等各个行业。在本文中,我们描述了从宽到窄分层使用位置特征和其他统计特征进行GBDT预测的第6位解决方案。特别是对于窄特征,通过扩展node2vec生成图嵌入特征,使其更容易处理大量数据。该方案的MAPE得分为12.478。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信