{"title":"A framework for modeling the appearance of 3D articulated figures","authors":"H. Kjellström, F. D. L. Torre, Michael J. Black","doi":"10.1109/AFGR.2000.840661","DOIUrl":null,"url":null,"abstract":"This paper describes a framework for constructing a linear subspace model of image appearance for complex articulated 3D figures such as humans and other animals. A commercial motion capture system provides 3D data that is aligned with images of subjects performing various activities. Portions of a limb's image appearance are seen from multiple views and for multiple subjects. From these partial views, weighted principal component analysis is used to construct a linear subspace representation of the \"unwrapped\" image appearance of each limb. The linear subspaces provide a generative model of the object appearance that is exploited in a Bayesian particle filtering tracking system. Results of tracking single limbs and walking humans are presented.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83
Abstract
This paper describes a framework for constructing a linear subspace model of image appearance for complex articulated 3D figures such as humans and other animals. A commercial motion capture system provides 3D data that is aligned with images of subjects performing various activities. Portions of a limb's image appearance are seen from multiple views and for multiple subjects. From these partial views, weighted principal component analysis is used to construct a linear subspace representation of the "unwrapped" image appearance of each limb. The linear subspaces provide a generative model of the object appearance that is exploited in a Bayesian particle filtering tracking system. Results of tracking single limbs and walking humans are presented.