A Novel Hybrid Approach for Chronic Disease Classification

Divya Jain, Singh Vijendra
{"title":"A Novel Hybrid Approach for Chronic Disease Classification","authors":"Divya Jain, Singh Vijendra","doi":"10.4018/ijhisi.2020010101","DOIUrl":null,"url":null,"abstract":"A two-phase diagnostic framework based on hybrid classification for the diagnosis of chronic disease is proposed. In the first phase, feature selection via ReliefF method and feature extraction via PCA method are incorporated. In the second phase, efficient optimization of SVM parameters via grid search method is performed. The proposed hybrid classification approach is then tested with seven popular chronic disease datasets using a cross-validation method. Experiments are then conducted to evaluate the presented classification method vis-à-vis four other existing classifiers that are applied on the same chronic disease datasets. Results show that the presented approach reduces approximately 40% of the extraneous and surplus features with substantial reduction in the execution time for mining all datasets, achieving the highest classification accuracy of 98.5%. It is concluded that with the presented approach, excellent classification accuracy is achieved for each chronic disease dataset while irrelevant and redundant features may be eliminated, thereby substantially reducing the diagnostic complexity and resulting computational time.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.2020010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A two-phase diagnostic framework based on hybrid classification for the diagnosis of chronic disease is proposed. In the first phase, feature selection via ReliefF method and feature extraction via PCA method are incorporated. In the second phase, efficient optimization of SVM parameters via grid search method is performed. The proposed hybrid classification approach is then tested with seven popular chronic disease datasets using a cross-validation method. Experiments are then conducted to evaluate the presented classification method vis-à-vis four other existing classifiers that are applied on the same chronic disease datasets. Results show that the presented approach reduces approximately 40% of the extraneous and surplus features with substantial reduction in the execution time for mining all datasets, achieving the highest classification accuracy of 98.5%. It is concluded that with the presented approach, excellent classification accuracy is achieved for each chronic disease dataset while irrelevant and redundant features may be eliminated, thereby substantially reducing the diagnostic complexity and resulting computational time.
一种新的慢性病分类混合方法
提出了一种基于混合分类的两阶段慢性疾病诊断框架。第一阶段结合ReliefF方法进行特征选择和PCA方法进行特征提取。第二阶段,采用网格搜索方法对支持向量机参数进行高效优化。然后使用交叉验证方法对七种流行的慢性病数据集进行了混合分类方法的测试。然后进行实验,对比-à-vis应用于相同慢性病数据集的其他四个现有分类器来评估所提出的分类方法。结果表明,该方法减少了大约40%的多余和多余的特征,大大减少了挖掘所有数据集的执行时间,达到了98.5%的最高分类准确率。结果表明,该方法在剔除不相关和冗余特征的同时,对每个慢性疾病数据集的分类精度都很高,从而大大降低了诊断复杂性和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信