{"title":"Categorizing Requirements for Enterprise Architecture Management in Big Data Literature","authors":"Stefan Kehrer, Dierk Jugel, A. Zimmermann","doi":"10.1109/EDOCW.2016.7584352","DOIUrl":null,"url":null,"abstract":"Organizations identified the opportunities of big data analytics to support the business with problem-specific insights through the exploitation of generated data. Socio-technical solutions are developed in big data projects to reach competitive advantage. Although these projects are aligned to specific business needs, common architectural challenges are not addressed in a comprehensive manner. Enterprise architecture management is a holistic approach to tackle complex business and IT architectures. The transformation of an organization's EA is influenced by big data transformation processes and their data-driven approach on all layers. In this paper, we review big data literature to analyze which requirements for the EA management discipline are proposed. Based on a systematic literature identification, conceptual categories of requirements for EA management are elicited utilizing an inductive category formation. These conceptual categories of requirements constitute a category system that facilitates a new perspective on EA management and fosters the innovation-driven evolution of the EA management discipline.","PeriodicalId":287808,"journal":{"name":"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 20th International Enterprise Distributed Object Computing Workshop (EDOCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDOCW.2016.7584352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Organizations identified the opportunities of big data analytics to support the business with problem-specific insights through the exploitation of generated data. Socio-technical solutions are developed in big data projects to reach competitive advantage. Although these projects are aligned to specific business needs, common architectural challenges are not addressed in a comprehensive manner. Enterprise architecture management is a holistic approach to tackle complex business and IT architectures. The transformation of an organization's EA is influenced by big data transformation processes and their data-driven approach on all layers. In this paper, we review big data literature to analyze which requirements for the EA management discipline are proposed. Based on a systematic literature identification, conceptual categories of requirements for EA management are elicited utilizing an inductive category formation. These conceptual categories of requirements constitute a category system that facilitates a new perspective on EA management and fosters the innovation-driven evolution of the EA management discipline.