Ontology Learning Through Focused Crawling and Information Extraction

H. Luong, Susan Gauch, Qiang Wang
{"title":"Ontology Learning Through Focused Crawling and Information Extraction","authors":"H. Luong, Susan Gauch, Qiang Wang","doi":"10.1109/KSE.2009.28","DOIUrl":null,"url":null,"abstract":"Ontology learning aims to facilitate the construction of ontologies by decreasing the amount of effort required to produce an ontology for a new domain. However, there are few studies that attempt to automate the entire ontology learning process from the collection of domain-specific literature, to text mining to build new ontologies or enrich existing ones. In this paper, we present a complete framework for ontology learning that enables us to retrieve documents from the Web using focused crawling, and then use a SVM (Support Vector Machine) classifier to identify domain-specific documents and perform text mining in order to extract useful information for the ontology enrichment process. We have carried out several experiments on components of this framework in a biological domain, amphibian morphology. This paper reports on the overall system architecture and our initial experiments on information extraction using text mining techniques to enrich the domain ontology.","PeriodicalId":347175,"journal":{"name":"2009 International Conference on Knowledge and Systems Engineering","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2009.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Ontology learning aims to facilitate the construction of ontologies by decreasing the amount of effort required to produce an ontology for a new domain. However, there are few studies that attempt to automate the entire ontology learning process from the collection of domain-specific literature, to text mining to build new ontologies or enrich existing ones. In this paper, we present a complete framework for ontology learning that enables us to retrieve documents from the Web using focused crawling, and then use a SVM (Support Vector Machine) classifier to identify domain-specific documents and perform text mining in order to extract useful information for the ontology enrichment process. We have carried out several experiments on components of this framework in a biological domain, amphibian morphology. This paper reports on the overall system architecture and our initial experiments on information extraction using text mining techniques to enrich the domain ontology.
聚焦爬行和信息提取的本体学习
本体学习旨在通过减少为新领域生成本体所需的工作量来促进本体的构建。然而,很少有研究试图自动化整个本体学习过程,从特定领域文献的收集,到文本挖掘,以建立新的本体或丰富现有的本体。在本文中,我们提出了一个完整的本体学习框架,使我们能够使用集中爬行从Web检索文档,然后使用SVM(支持向量机)分类器识别特定领域的文档并进行文本挖掘,以便为本体丰富过程提取有用的信息。我们在生物领域两栖动物形态学中对这个框架的组成部分进行了几次实验。本文报告了整个系统架构和我们使用文本挖掘技术来丰富领域本体的信息提取的初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信