Constructive Algorithms for Discrepancy Minimization

N. Bansal
{"title":"Constructive Algorithms for Discrepancy Minimization","authors":"N. Bansal","doi":"10.1109/FOCS.2010.7","DOIUrl":null,"url":null,"abstract":"Given a set system $(V,\\mathcal{S})$, $V=\\{1,\\ldots,n\\}$ and $\\mathcal{S}=\\{S_1,\\ldots,S_m\\}$, the minimum discrepancy problem is to find a 2-coloring $\\mathcal{X}:V \\right arrow \\{-1,+1\\}$, such that each set is colored as evenly as possible, i.e. find $\\mathcal{X}$ to minimize $\\max_{j \\in [m]} \\left|\\sum_{i \\in S_j} \\mathcal{X}(i)\\right|$. In this paper we give the first polynomial time algorithms for discrepancy minimization that achieve bounds similar to those known existentially using the so-called Entropy Method. We also give a first approximation-like result for discrepancy. Specifically we give efficient randomized algorithms to: 1. Construct an $O(n^{1/2})$ discrepancy coloring for general sets systems when $m=O(n)$, matching the celebrated result of Spencer up to $O(1)$ factors. More generally, for $m\\geq n$, we obtain a discrepancy of $O(n^{1/2} \\log (2m/n))$. 2. Construct a coloring with discrepancy $O(t^{1/2} \\log n)$, if each element lies in at most $t$ sets. This matches the (non-constructive) result of Srinivasan. 3. Construct a coloring with discrepancy $O( \\lambda\\log (nm))$, where $\\lambda$ is the hereditary discrepancy of the set system. The main idea in our algorithms is to produce a coloring over time by letting the color of the elements perform a random walk (with tiny increments) starting from 0 until they reach $\\pm 1$. At each step the random hops for various elements are correlated by a solution to a semi definite program, where this program is determined by the current state and the entropy method.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"174","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2010.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 174

Abstract

Given a set system $(V,\mathcal{S})$, $V=\{1,\ldots,n\}$ and $\mathcal{S}=\{S_1,\ldots,S_m\}$, the minimum discrepancy problem is to find a 2-coloring $\mathcal{X}:V \right arrow \{-1,+1\}$, such that each set is colored as evenly as possible, i.e. find $\mathcal{X}$ to minimize $\max_{j \in [m]} \left|\sum_{i \in S_j} \mathcal{X}(i)\right|$. In this paper we give the first polynomial time algorithms for discrepancy minimization that achieve bounds similar to those known existentially using the so-called Entropy Method. We also give a first approximation-like result for discrepancy. Specifically we give efficient randomized algorithms to: 1. Construct an $O(n^{1/2})$ discrepancy coloring for general sets systems when $m=O(n)$, matching the celebrated result of Spencer up to $O(1)$ factors. More generally, for $m\geq n$, we obtain a discrepancy of $O(n^{1/2} \log (2m/n))$. 2. Construct a coloring with discrepancy $O(t^{1/2} \log n)$, if each element lies in at most $t$ sets. This matches the (non-constructive) result of Srinivasan. 3. Construct a coloring with discrepancy $O( \lambda\log (nm))$, where $\lambda$ is the hereditary discrepancy of the set system. The main idea in our algorithms is to produce a coloring over time by letting the color of the elements perform a random walk (with tiny increments) starting from 0 until they reach $\pm 1$. At each step the random hops for various elements are correlated by a solution to a semi definite program, where this program is determined by the current state and the entropy method.
差异最小化的构造算法
给定一个集合系统$(V,\mathcal{S})$, $V=\{1,\ldots,n\}$和$\mathcal{S}=\{S_1,\ldots,S_m\}$,最小差异问题是找到一个2着色的$\mathcal{X}:V \right arrow \{-1,+1\}$,使每个集合的着色尽可能均匀,即找到$\mathcal{X}$以最小化$\max_{j \in [m]} \left|\sum_{i \in S_j} \mathcal{X}(i)\right|$。在本文中,我们给出了第一个多项式时间算法的差异最小化,达到界类似于那些已知的存在使用所谓的熵方法。对于差异,我们也给出了一个近似的第一近似结果。具体来说,我们给出了高效的随机化算法:1。对于一般集系统,当$m=O(n)$时,构造一个$O(n^{1/2})$差异着色,将Spencer的著名结果匹配到$O(1)$因子。更一般地说,对于$m\geq n$,我们得到了$O(n^{1/2} \log (2m/n))$的差异。2. 如果每个元素最多位于$t$集中,则构造一个差异为$O(t^{1/2} \log n)$的着色。这与Srinivasan的(非建设性)结果相匹配。构造一个偏差$O( \lambda\log (nm))$的着色,其中$\lambda$为集合系统的遗传偏差。我们算法的主要思想是通过让元素的颜色执行从0开始的随机游走(以微小的增量),直到它们到达$\pm 1$,从而随着时间的推移产生颜色。在每一步中,各种元素的随机跳数通过半确定程序的解相关联,其中该程序由当前状态和熵法决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信