Predicting Non-invasive Ventilation in ALS Patients Using Stratified Disease Progression Groups

S. Pires, M. Gromicho, S. Pinto, M. Carvalho, S. Madeira
{"title":"Predicting Non-invasive Ventilation in ALS Patients Using Stratified Disease Progression Groups","authors":"S. Pires, M. Gromicho, S. Pinto, M. Carvalho, S. Madeira","doi":"10.1109/ICDMW.2018.00113","DOIUrl":null,"url":null,"abstract":"Amyotrophic Lateral Sclerosis (ALS) is a neurode-generative disease highly known for its rapid progression, leading to death usually within a few years. Respiratory failure is the most common cause of death. Therefore, efforts must be taken to prevent respiratory insufficiency. Preventive administration of non-invasive ventilation (NIV) has proven to improve survival in ALS patients. Using disease progression groups revealed to be of great importance to ALS studies, since the heterogeneous nature of disease presentation and progression presents challenges to the learn of predictive models that work for all patients. In this context, we propose an approach to stratify patients in three progression groups (Slow, Neutral and Fast) enabling the creation of specialized learning models that predict the need of NIV within a time window of 90, 180 or 365 days of their current medical appointment. The models are built using a collection of classifiers and 5x10-fold cross validation. We also test the use of a Feature Selection Ensemble to test which features are more relevant to predict this outcome. Our specialized predictive models showed promising results, proving the utility of patient stratification when predicting NIV in ALS patients.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurode-generative disease highly known for its rapid progression, leading to death usually within a few years. Respiratory failure is the most common cause of death. Therefore, efforts must be taken to prevent respiratory insufficiency. Preventive administration of non-invasive ventilation (NIV) has proven to improve survival in ALS patients. Using disease progression groups revealed to be of great importance to ALS studies, since the heterogeneous nature of disease presentation and progression presents challenges to the learn of predictive models that work for all patients. In this context, we propose an approach to stratify patients in three progression groups (Slow, Neutral and Fast) enabling the creation of specialized learning models that predict the need of NIV within a time window of 90, 180 or 365 days of their current medical appointment. The models are built using a collection of classifiers and 5x10-fold cross validation. We also test the use of a Feature Selection Ensemble to test which features are more relevant to predict this outcome. Our specialized predictive models showed promising results, proving the utility of patient stratification when predicting NIV in ALS patients.
分层疾病进展组预测ALS患者无创通气
肌萎缩性侧索硬化症(ALS)是一种神经退行性疾病,以其快速进展而闻名,通常在几年内导致死亡。呼吸衰竭是最常见的死亡原因。因此,必须努力预防呼吸功能不全。无创通气(NIV)的预防性管理已被证明可以提高ALS患者的生存率。使用疾病进展组对ALS研究非常重要,因为疾病表现和进展的异质性对学习适用于所有患者的预测模型提出了挑战。在这种情况下,我们提出了一种方法,将患者分为三个进展组(慢、中性和快速),从而建立专门的学习模型,预测患者当前医疗预约后90天、180天或365天内是否需要使用NIV。这些模型是使用分类器集合和5 × 10倍交叉验证构建的。我们还测试了特征选择集成的使用,以测试哪些特征与预测结果更相关。我们的专业预测模型显示了有希望的结果,证明了患者分层在预测ALS患者NIV时的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信