Optic Disc Segmentation using Nonconvex Rank Approximation from Retinal Fundus Images

Satyabrata Lenka, Mayaluri Zefree Lazarus
{"title":"Optic Disc Segmentation using Nonconvex Rank Approximation from Retinal Fundus Images","authors":"Satyabrata Lenka, Mayaluri Zefree Lazarus","doi":"10.1109/iSSSC56467.2022.10051542","DOIUrl":null,"url":null,"abstract":"An essential step in the diagnosis of glaucoma is the accurate detection of the optic disc (OD). The increasing demand requires an effective and noninvasive retinal imaging tools to manage the growing retinal abnormality. A promising strategy in this area is the use of portable fundus cameras and handheld mobile cameras that are connected to a smartphone. In contrast to retinal images taken using traditional equipment, the fundus camera and smartphone images are frequently of poor quality and difficult to segment the optic disc due to nonuniform illumination and a small curved surface of the retina. To alleviate the segmentation problem, this paper proposed a non-convex rank approximation technique for efficient segmentation of optic disc. Adaboost, KNN, Randomforest and SVM are the four machine learning classifiers used after OD segmentation in order to compare the results of the proposed method and for better accuracy. This method achieved an accuracy of 89.25% using SVM classifier for REFUGE dataset.","PeriodicalId":334645,"journal":{"name":"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSSSC56467.2022.10051542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An essential step in the diagnosis of glaucoma is the accurate detection of the optic disc (OD). The increasing demand requires an effective and noninvasive retinal imaging tools to manage the growing retinal abnormality. A promising strategy in this area is the use of portable fundus cameras and handheld mobile cameras that are connected to a smartphone. In contrast to retinal images taken using traditional equipment, the fundus camera and smartphone images are frequently of poor quality and difficult to segment the optic disc due to nonuniform illumination and a small curved surface of the retina. To alleviate the segmentation problem, this paper proposed a non-convex rank approximation technique for efficient segmentation of optic disc. Adaboost, KNN, Randomforest and SVM are the four machine learning classifiers used after OD segmentation in order to compare the results of the proposed method and for better accuracy. This method achieved an accuracy of 89.25% using SVM classifier for REFUGE dataset.
基于非凸秩逼近的视网膜眼底图像视盘分割
诊断青光眼的重要步骤是准确检测视盘(OD)。日益增长的需求需要一种有效的、非侵入性的视网膜成像工具来管理日益增长的视网膜异常。在这一领域,一个很有前途的策略是使用便携式眼底相机和连接到智能手机的手持移动相机。与传统设备拍摄的视网膜图像相比,由于光照不均匀和视网膜曲面小,眼底相机和智能手机图像往往质量较差,难以分割视盘。为了解决视盘图像分割问题,提出了一种非凸秩近似分割视盘图像的方法。Adaboost, KNN, Randomforest和SVM是OD分割后使用的四种机器学习分类器,以便比较所提出方法的结果并获得更好的准确性。使用SVM分类器对REFUGE数据集进行分类,准确率达到89.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信