Spectral Analysis of Multiscale Cultural Traits on Twitter

C. Squires, N. Kunapuli, Y. Bar-Yam, A. Morales
{"title":"Spectral Analysis of Multiscale Cultural Traits on Twitter","authors":"C. Squires, N. Kunapuli, Y. Bar-Yam, A. Morales","doi":"10.22191/nejcs/vol4/iss2/2","DOIUrl":null,"url":null,"abstract":"Understanding and mapping the emergence and boundaries of cultural areas is a challenge for social sciences. In this paper, we present a method for analyzing the cultural composition of regions via Twitter hashtags. Cultures can be described as distinct combination of traits which we capture via principal component analysis (PCA). We investigate the top 8 PCA components of an area including France, Spain, and Portugal, in terms of the geographic distribution of their hashtag composition. We also discuss relationships between components and the insights those relationships can provide into the structure of a cultural space. Finally, we compare the spatial autocorrelation of PCA components in the Twitter data to similar components resulting from the Axelrod model. We conclude that properties of Twitter behavior can be framed in the discussion of cultural emergence and collective learning.","PeriodicalId":184569,"journal":{"name":"Northeast Journal of Complex Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Northeast Journal of Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22191/nejcs/vol4/iss2/2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and mapping the emergence and boundaries of cultural areas is a challenge for social sciences. In this paper, we present a method for analyzing the cultural composition of regions via Twitter hashtags. Cultures can be described as distinct combination of traits which we capture via principal component analysis (PCA). We investigate the top 8 PCA components of an area including France, Spain, and Portugal, in terms of the geographic distribution of their hashtag composition. We also discuss relationships between components and the insights those relationships can provide into the structure of a cultural space. Finally, we compare the spatial autocorrelation of PCA components in the Twitter data to similar components resulting from the Axelrod model. We conclude that properties of Twitter behavior can be framed in the discussion of cultural emergence and collective learning.
推特上多尺度文化特征的光谱分析
理解和绘制文化区域的出现和边界是社会科学面临的挑战。在本文中,我们提出了一种通过Twitter标签分析地区文化构成的方法。培养可以被描述为我们通过主成分分析(PCA)捕获的特征的不同组合。我们调查了包括法国、西班牙和葡萄牙在内的一个地区的前8个PCA成分,根据其标签组成的地理分布。我们还讨论了组件之间的关系,以及这些关系可以为文化空间的结构提供的见解。最后,我们将Twitter数据中PCA分量的空间自相关性与Axelrod模型产生的类似分量进行了比较。我们得出的结论是,推特行为的属性可以在文化出现和集体学习的讨论中得到框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信