Audio-Emotion Recognition System Using Parallel Classifiers and Audio Feature Analyzer

Li Wern Chew, K. Seng, L. Ang, Vish Ramakonar, Amalan Gnanasegaran
{"title":"Audio-Emotion Recognition System Using Parallel Classifiers and Audio Feature Analyzer","authors":"Li Wern Chew, K. Seng, L. Ang, Vish Ramakonar, Amalan Gnanasegaran","doi":"10.1109/CIMSIM.2011.44","DOIUrl":null,"url":null,"abstract":"Emotion recognition based on an audio signal is an area of active research in the domain of human-computer interaction and effective computing. This paper presents an audio-emotion recognition (AER) system using parallel classifiers and an audio feature analyzer. In the proposed system, audio features such as the pitch and fractional cepstral coefficient are first extracted from the audio signal for analysis. These extracted features are then used to train a radial basis function. Lastly, an audio feature analyzer is used to enhance the performance of the recognition rate. The latest simulation results show that the proposed AER system is able to achieve an emotion recognition rate of 81.67%.","PeriodicalId":125671,"journal":{"name":"2011 Third International Conference on Computational Intelligence, Modelling & Simulation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Conference on Computational Intelligence, Modelling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2011.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Emotion recognition based on an audio signal is an area of active research in the domain of human-computer interaction and effective computing. This paper presents an audio-emotion recognition (AER) system using parallel classifiers and an audio feature analyzer. In the proposed system, audio features such as the pitch and fractional cepstral coefficient are first extracted from the audio signal for analysis. These extracted features are then used to train a radial basis function. Lastly, an audio feature analyzer is used to enhance the performance of the recognition rate. The latest simulation results show that the proposed AER system is able to achieve an emotion recognition rate of 81.67%.
基于并行分类器和音频特征分析器的音频情感识别系统
基于音频信号的情感识别是人机交互和有效计算领域的一个活跃研究领域。提出了一种基于并行分类器和音频特征分析器的音频情感识别系统。在该系统中,首先从音频信号中提取音高和分数倒谱系数等音频特征进行分析。然后使用这些提取的特征来训练径向基函数。最后,利用音频特征分析仪来提高识别率。最新的仿真结果表明,本文提出的AER系统能够实现81.67%的情绪识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信