Sparse representation based classification performance under different optimization forms for face recognition

Khalfalla Awedat, Almabrok E. Essa, V. Asari, David Stoppenbrink
{"title":"Sparse representation based classification performance under different optimization forms for face recognition","authors":"Khalfalla Awedat, Almabrok E. Essa, V. Asari, David Stoppenbrink","doi":"10.1109/NAECON.2017.8268721","DOIUrl":null,"url":null,"abstract":"Sparse representation-based classification (SRC) has become one of the most powerful methods for robust face recognition. However, there are some limitations of SRC performance at the presence of noise, occlusion, and illumination variation problems, which make it unstable. Therefore, we investigate the performance of SRC under different data conditions by applying the most powerful optimization methods based on SRC and focusing on the corrections between data samples and the sparseness. For evaluation, we utilize several challenging face datasets that include diversity of illumination and occlusion conditions.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sparse representation-based classification (SRC) has become one of the most powerful methods for robust face recognition. However, there are some limitations of SRC performance at the presence of noise, occlusion, and illumination variation problems, which make it unstable. Therefore, we investigate the performance of SRC under different data conditions by applying the most powerful optimization methods based on SRC and focusing on the corrections between data samples and the sparseness. For evaluation, we utilize several challenging face datasets that include diversity of illumination and occlusion conditions.
基于稀疏表示的不同优化形式下的人脸识别分类性能
基于稀疏表示的分类(SRC)已成为鲁棒人脸识别中最强大的方法之一。然而,在存在噪声、遮挡和光照变化问题时,SRC的性能存在一定的局限性,使其不稳定。因此,我们采用基于SRC的最强大的优化方法,重点关注数据样本之间的校正和稀疏性,研究SRC在不同数据条件下的性能。为了评估,我们使用了几个具有挑战性的人脸数据集,包括光照和遮挡条件的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信