On the Qualitative Behavior of the Difference Equation $\delta _{m+1}=\omega +\zeta \frac{f(\delta _{m},\delta _{m-1})}{\delta _{m-1}^{\beta}}$

M. Gümüş, Şeyma Irmak Eği̇lmez
{"title":"On the Qualitative Behavior of the Difference Equation $\\delta _{m+1}=\\omega +\\zeta \\frac{f(\\delta _{m},\\delta _{m-1})}{\\delta _{m-1}^{\\beta}}$","authors":"M. Gümüş, Şeyma Irmak Eği̇lmez","doi":"10.36753/mathenot.1243583","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to investigate the qualitative behavior of a general class of non-linear difference equations. That is, the prime period two solutions, the prime period three solutions and the stability character are examined. We also use a new technique introduced in [1] by E. M. Elsayed and later developed by O. Moaaz in [2] to examine the existence of periodic solutions of these general equations. Moreover, we use homogeneous functions for the investigation of the dynamics of the aforementioned equations.","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/mathenot.1243583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we aim to investigate the qualitative behavior of a general class of non-linear difference equations. That is, the prime period two solutions, the prime period three solutions and the stability character are examined. We also use a new technique introduced in [1] by E. M. Elsayed and later developed by O. Moaaz in [2] to examine the existence of periodic solutions of these general equations. Moreover, we use homogeneous functions for the investigation of the dynamics of the aforementioned equations.
关于差分方程的定性行为 $\delta _{m+1}=\omega +\zeta \frac{f(\delta _{m},\delta _{m-1})}{\delta _{m-1}^{\beta}}$
本文的目的是研究一类一般非线性差分方程的定性性质。即对素数周期二解、素数周期三解及其稳定性进行了研究。我们还使用E. M. Elsayed在[1]中引入的一种新技术,后来由O. Moaaz在[2]中发展起来,来检验这些一般方程周期解的存在性。此外,我们使用齐次函数来研究上述方程的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信