Approximating Min-Diameter: Standard and Bichromatic

A. Berger, Jenny Kaufmann, V. V. Williams
{"title":"Approximating Min-Diameter: Standard and Bichromatic","authors":"A. Berger, Jenny Kaufmann, V. V. Williams","doi":"10.48550/arXiv.2308.08674","DOIUrl":null,"url":null,"abstract":"The min-diameter of a directed graph $G$ is a measure of the largest distance between nodes. It is equal to the maximum min-distance $d_{min}(u,v)$ across all pairs $u,v \\in V(G)$, where $d_{min}(u,v) = \\min(d(u,v), d(v,u))$. Our work provides a $O(m^{1.426}n^{0.288})$-time $3/2$-approximation algorithm for min-diameter in DAGs, and a faster $O(m^{0.713}n)$-time almost-$3/2$-approximation variant. (An almost-$\\alpha$-approximation algorithm determines the min-diameter to within a multiplicative factor of $\\alpha$ plus constant additive error.) By a conditional lower bound result of [Abboud et al, SODA 2016], a better than $3/2$-approximation can't be achieved in truly subquadratic time under the Strong Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a new conditional lower bound for min-diameter approximation in general directed graphs, showing that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time. We also present the first study of approximating bichromatic min-diameter, which is the maximum min-distance between oppositely colored vertices in a 2-colored graph.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"os-51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.08674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The min-diameter of a directed graph $G$ is a measure of the largest distance between nodes. It is equal to the maximum min-distance $d_{min}(u,v)$ across all pairs $u,v \in V(G)$, where $d_{min}(u,v) = \min(d(u,v), d(v,u))$. Our work provides a $O(m^{1.426}n^{0.288})$-time $3/2$-approximation algorithm for min-diameter in DAGs, and a faster $O(m^{0.713}n)$-time almost-$3/2$-approximation variant. (An almost-$\alpha$-approximation algorithm determines the min-diameter to within a multiplicative factor of $\alpha$ plus constant additive error.) By a conditional lower bound result of [Abboud et al, SODA 2016], a better than $3/2$-approximation can't be achieved in truly subquadratic time under the Strong Exponential Time Hypothesis (SETH), so our result is conditionally tight. We additionally obtain a new conditional lower bound for min-diameter approximation in general directed graphs, showing that under SETH, one cannot achieve an approximation factor below 2 in truly subquadratic time. We also present the first study of approximating bichromatic min-diameter, which is the maximum min-distance between oppositely colored vertices in a 2-colored graph.
近似最小直径:标准和双色
有向图 $G$ 的最小直径是节点间最大距离的度量。它等于 V(G)$ 中所有 $u,v 对的最大最小距离 $d_{min}(u,v)$,其中 $d_{min}(u,v) = \min(d(u,v),d(v,u))$。我们的工作为 DAG 中的最小直径提供了一个 $O(m^{1.426}n^{0.288})$ 时的 $3/2$ 近似算法,以及一个更快的 $O(m^{0.713}n)$ 时的 almost-$3/2$ 近似变体。(几乎-$\alpha$-近似计算法确定的最小直径在$\alpha$的乘法因子加上恒定加法误差之内)。根据 [Abboud et al, SODA 2016] 的条件下界结果,在强指数时间假说(SETH)下,无法在真正的亚二次方时间内实现优于 3/2$ 的逼近,因此我们的结果是有条件地严密的。此外,我们还获得了一般有向图中最小直径近似的新条件下限,表明在 SETH 条件下,无法在真正的亚二次方时间内实现低于 2 的近似因子。我们还首次提出了近似双色最小直径的研究,即双色图中对色顶点之间的最大最小距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信