A new interpretation of the LQG/LTR technique using optimal projection equations

R. Paschall, P. Maybeck
{"title":"A new interpretation of the LQG/LTR technique using optimal projection equations","authors":"R. Paschall, P. Maybeck","doi":"10.1109/CDC.1989.70163","DOIUrl":null,"url":null,"abstract":"It is demonstrated that the LQR/LTR (linear quadratic Gaussian/loop transfer recovery) technique can be viewed as a way to achieve robustness even under the constraint of a reduced-order controller, even though one is not necessarily recovering a desired transfer function asymptotically. The optimal projection equation (OPE) approach gives an expanded view of LQG/LTR technique when the order of the controller is intentionally less than the order of the system design model. Also, the OPE approach allows other forms for Omega , which may give more flexibility as to how the system perturbations are modeled, to be chosen.<<ETX>>","PeriodicalId":156565,"journal":{"name":"Proceedings of the 28th IEEE Conference on Decision and Control,","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th IEEE Conference on Decision and Control,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1989.70163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is demonstrated that the LQR/LTR (linear quadratic Gaussian/loop transfer recovery) technique can be viewed as a way to achieve robustness even under the constraint of a reduced-order controller, even though one is not necessarily recovering a desired transfer function asymptotically. The optimal projection equation (OPE) approach gives an expanded view of LQG/LTR technique when the order of the controller is intentionally less than the order of the system design model. Also, the OPE approach allows other forms for Omega , which may give more flexibility as to how the system perturbations are modeled, to be chosen.<>
用最优投影方程对LQG/LTR技术的新解释
结果表明,LQR/LTR(线性二次高斯/环传递恢复)技术即使在降阶控制器的约束下也可以被视为一种实现鲁棒性的方法,即使不一定能渐进地恢复期望的传递函数。当控制器的阶数有意小于系统设计模型的阶数时,最优投影方程(OPE)方法提供了LQG/LTR技术的扩展视图。此外,OPE方法允许选择Omega的其他形式,这可能在如何对系统扰动进行建模方面提供更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信