Robustness analysis of automatic speech signal recognition system against factors degrading speech signal

J. Oska, J. Wojtun, K. Wodecki, Z. Piotrowski
{"title":"Robustness analysis of automatic speech signal recognition system against factors degrading speech signal","authors":"J. Oska, J. Wojtun, K. Wodecki, Z. Piotrowski","doi":"10.1109/SPA.2015.7365136","DOIUrl":null,"url":null,"abstract":"In the article there are presented the results of research on the influence of the lossy compression, used in codecs G.711, G.723.1 and iLBC, on the efficiency of isolated speech phrase recognition. In the research the degree of robustness against degrading factors in the parameterisation method of audio signal LPCC and MFCC (Linear Prediction Cepstral Coefficients, Mel Frequency Cepstral Coefficients) is compared. The research is based on the classifier of improved Gaussian mixtures making allowance for Universal Background Model GMM-UBM (Gaussian Mixtures Model - Universal Background Model). The research was conducted on the database composed of 3000 isolated speech phrases.","PeriodicalId":423880,"journal":{"name":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPA.2015.7365136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the article there are presented the results of research on the influence of the lossy compression, used in codecs G.711, G.723.1 and iLBC, on the efficiency of isolated speech phrase recognition. In the research the degree of robustness against degrading factors in the parameterisation method of audio signal LPCC and MFCC (Linear Prediction Cepstral Coefficients, Mel Frequency Cepstral Coefficients) is compared. The research is based on the classifier of improved Gaussian mixtures making allowance for Universal Background Model GMM-UBM (Gaussian Mixtures Model - Universal Background Model). The research was conducted on the database composed of 3000 isolated speech phrases.
语音信号自动识别系统对语音信号退化因素的鲁棒性分析
本文给出了在G.711、G.723.1和iLBC编解码器中使用有损压缩对孤立语音短语识别效率影响的研究结果。在研究中比较了音频信号参数化方法LPCC和MFCC(线性预测倒谱系数,Mel频率倒谱系数)对退化因子的鲁棒性。本研究基于改进的高斯混合分类器,并考虑通用背景模型GMM-UBM(高斯混合模型-通用背景模型)。该研究是在由3000个孤立的语音短语组成的数据库上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信