MapSQ: A Plugin-based MapReduce Framework for SPARQL Queries on GPU

Jiaming Song, Xiaowang Zhang, Peng Peng, Zhiyong Feng, Lei Zou
{"title":"MapSQ: A Plugin-based MapReduce Framework for SPARQL Queries on GPU","authors":"Jiaming Song, Xiaowang Zhang, Peng Peng, Zhiyong Feng, Lei Zou","doi":"10.1145/3184558.3186939","DOIUrl":null,"url":null,"abstract":"In this paper, we present a plugin-based framework (MapSQ) with three parts for SPARQL queries utilizing high-performance of GPU to accelerate answering in a convenient way. Selector chooses suitable join order according to characteristics of data and queries. Executor answers subqueries and returns intermediate solutions and GPU Computing obtains the join result of intermediate solutions through MapReduce. Finally, we evaluate MapSQ bulit on gStore and RDF-3X on the LUBM benchmark and YAGO datasets (over 200 million triples). The experimental results show that MapSQ significantly improves the performance of SPARQL query engines with speedup up to 33.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3186939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a plugin-based framework (MapSQ) with three parts for SPARQL queries utilizing high-performance of GPU to accelerate answering in a convenient way. Selector chooses suitable join order according to characteristics of data and queries. Executor answers subqueries and returns intermediate solutions and GPU Computing obtains the join result of intermediate solutions through MapReduce. Finally, we evaluate MapSQ bulit on gStore and RDF-3X on the LUBM benchmark and YAGO datasets (over 200 million triples). The experimental results show that MapSQ significantly improves the performance of SPARQL query engines with speedup up to 33.
MapSQ:基于插件的MapReduce框架,用于GPU上的SPARQL查询
在本文中,我们提出了一个基于插件的框架(MapSQ),该框架由三个部分组成,用于SPARQL查询,利用GPU的高性能以方便的方式加速回答。选择器根据数据和查询的特征选择合适的连接顺序。Executor回答子查询并返回中间解,GPU Computing通过MapReduce获取中间解的联接结果。最后,我们在LUBM基准和YAGO数据集(超过2亿个三元组)上评估了基于gStore和RDF-3X构建的MapSQ。实验结果表明,MapSQ显著提高了SPARQL查询引擎的性能,加速率高达33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信