Scalable, continuous tracking of tag co-occurrences between short sets using (almost) disjoint tag partitions

F. Alvanaki, S. Michel
{"title":"Scalable, continuous tracking of tag co-occurrences between short sets using (almost) disjoint tag partitions","authors":"F. Alvanaki, S. Michel","doi":"10.1145/2484702.2484705","DOIUrl":null,"url":null,"abstract":"In this work we consider the continuous computation of set correlations over a stream of set-valued attributes, such as Tweets and their hashtags, social annotations of blog posts obtained through RSS, or updates to set-valued attributes of databases. In order to compute tag correlations in a distributed fashion, all necessary information has to be present at the computing node(s). Our approach makes use of a partitioning scheme based on set covers for efficient and replication-lean information flow. We report on the results of a preliminary performance evaluation using Tweets obtained through Twitter's streaming API.","PeriodicalId":104130,"journal":{"name":"ACM SIGMOD Workshop on Databases and Social Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Workshop on Databases and Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484702.2484705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work we consider the continuous computation of set correlations over a stream of set-valued attributes, such as Tweets and their hashtags, social annotations of blog posts obtained through RSS, or updates to set-valued attributes of databases. In order to compute tag correlations in a distributed fashion, all necessary information has to be present at the computing node(s). Our approach makes use of a partitioning scheme based on set covers for efficient and replication-lean information flow. We report on the results of a preliminary performance evaluation using Tweets obtained through Twitter's streaming API.
使用(几乎)不相交的标签分区对短集之间的标签共现进行可扩展的连续跟踪
在这项工作中,我们考虑了集合值属性流上的集合相关性的连续计算,例如Tweets及其hashtag,通过RSS获得的博客帖子的社交注释,或数据库的集合值属性更新。为了以分布式方式计算标签相关性,所有必要的信息都必须出现在计算节点上。我们的方法利用基于集合覆盖的分区方案来实现高效和精简复制的信息流。我们报告了通过Twitter的流媒体API获得的tweet的初步性能评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信