Energy detection for decision fusion in wireless sensor networks over Ricean-mixture fading

P. Rossi, D. Ciuonzo, T. Ekman, K. Kansanen
{"title":"Energy detection for decision fusion in wireless sensor networks over Ricean-mixture fading","authors":"P. Rossi, D. Ciuonzo, T. Ekman, K. Kansanen","doi":"10.1109/SAM.2014.6882362","DOIUrl":null,"url":null,"abstract":"In this paper we focus on the energy detector for decision fusion in wireless sensor networks over multiple access channels. More specifically, we derive analytical performance in terms of global probability of false alarm and detection (including asymptotic performance for large number of sensors) when the fading is a Ricean mixture, i.e. channel coefficients are sampled from a Gaussian mixture (GM) distribution. The motivation for the GM is the ability to model real-world scenarios while keeping mathematical tractability. Analytical results are confirmed through numerical simulations.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we focus on the energy detector for decision fusion in wireless sensor networks over multiple access channels. More specifically, we derive analytical performance in terms of global probability of false alarm and detection (including asymptotic performance for large number of sensors) when the fading is a Ricean mixture, i.e. channel coefficients are sampled from a Gaussian mixture (GM) distribution. The motivation for the GM is the ability to model real-world scenarios while keeping mathematical tractability. Analytical results are confirmed through numerical simulations.
rice -mix衰落下无线传感器网络决策融合的能量检测
本文主要研究多通道无线传感器网络中用于决策融合的能量检测器。更具体地说,当衰落是一个Ricean混合,即信道系数从高斯混合(GM)分布中采样时,我们根据假警报和检测的全局概率(包括大量传感器的渐近性能)推导了分析性能。GM的动机是能够模拟现实世界的场景,同时保持数学的可追溯性。通过数值模拟验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信