Gene classification using expression profiles: a feasibility study

Michihiro Kuramochi, G. Karypis
{"title":"Gene classification using expression profiles: a feasibility study","authors":"Michihiro Kuramochi, G. Karypis","doi":"10.1109/BIBE.2001.974429","DOIUrl":null,"url":null,"abstract":"As various genome sequencing projects have already been completed or are near completion, genome researchers are shifting their focus to functional genomics. Functional genomics represents the next phase, that expands the biological investigation to studying the functionality of genes of a single organism as well as studying and correlating the functionality of genes across many different organisms. Recently developed methods for monitoring genome-wide mRNA expression changes hold the promise of allowing us to inexpensively gain insights into the function of unknown genes. In this paper we focus on evaluating the feasibility of using supervised machine learning methods for determining the function of genes based solely on their expression profiles. We experimentally evaluate the performance of traditional classification algorithms such as support vector machines and k-nearest neighbors on the yeast genome, and present new approaches for classification that improve the overall recall with moderate reductions in precision. Our experiments show that the accuracies achieved for different classes varies dramatically. In analyzing these results we show that the achieved accuracy is highly dependent on whether or not the genes of that class were significantly active during the various experimental conditions, suggesting that gene expression profiles can become a viable alternative to sequence similarity searches provided that the genes are observed under a wide range of experimental conditions.","PeriodicalId":405124,"journal":{"name":"Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2nd Annual IEEE International Symposium on Bioinformatics and Bioengineering (BIBE 2001)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2001.974429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

As various genome sequencing projects have already been completed or are near completion, genome researchers are shifting their focus to functional genomics. Functional genomics represents the next phase, that expands the biological investigation to studying the functionality of genes of a single organism as well as studying and correlating the functionality of genes across many different organisms. Recently developed methods for monitoring genome-wide mRNA expression changes hold the promise of allowing us to inexpensively gain insights into the function of unknown genes. In this paper we focus on evaluating the feasibility of using supervised machine learning methods for determining the function of genes based solely on their expression profiles. We experimentally evaluate the performance of traditional classification algorithms such as support vector machines and k-nearest neighbors on the yeast genome, and present new approaches for classification that improve the overall recall with moderate reductions in precision. Our experiments show that the accuracies achieved for different classes varies dramatically. In analyzing these results we show that the achieved accuracy is highly dependent on whether or not the genes of that class were significantly active during the various experimental conditions, suggesting that gene expression profiles can become a viable alternative to sequence similarity searches provided that the genes are observed under a wide range of experimental conditions.
利用表达谱进行基因分类的可行性研究
随着各种基因组测序项目已经完成或接近完成,基因组研究人员将重点转向功能基因组学。功能基因组学代表了下一个阶段,它将生物学研究扩展到研究单个生物体的基因功能,以及研究和关联许多不同生物体的基因功能。最近开发的监测全基因组mRNA表达变化的方法有望使我们以低廉的成本了解未知基因的功能。在本文中,我们专注于评估使用有监督的机器学习方法来确定仅基于基因表达谱的基因功能的可行性。我们通过实验评估了传统分类算法(如支持向量机和k近邻)在酵母基因组上的性能,并提出了新的分类方法,这些方法可以在适度降低精度的情况下提高总体召回率。我们的实验表明,不同类别的准确率差异很大。在分析这些结果时,我们发现所获得的准确性高度依赖于该类基因在各种实验条件下是否显着活跃,这表明基因表达谱可以成为序列相似性搜索的可行替代方案,前提是在广泛的实验条件下观察到基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信