Robust Multi-Relational Learning With Absolute Projection Rescal

Dimitris G. Chachlakis, Yorgos Tsitsikas, E. Papalexakis, Panos P. Markopoulos
{"title":"Robust Multi-Relational Learning With Absolute Projection Rescal","authors":"Dimitris G. Chachlakis, Yorgos Tsitsikas, E. Papalexakis, Panos P. Markopoulos","doi":"10.1109/GlobalSIP45357.2019.8969097","DOIUrl":null,"url":null,"abstract":"RESCAL is a popular approach for multi-relational learning based on tensor decomposition. At the same time, RESCAL follows a L2-norm formulation that can be very sensitive against outlying data corruptions. In this work, we propose A-RESCAL: a corruption-resistant reformulation of RESCAL based on absolute projections. Specifically, we (i) show that rank-1 A-RESCAL can be cast as a combinatorial problem over antipodal binary variables and solve it exactly by exhaustive search; (ii) develop an efficient iterative algorithm for approximating the solution to rank-1 A-RESCAL; and (iii) extend our solver for general rank by means of subspace deflation. Our experimental studies on multiple benchmark datasets show that A-RESCAL performs quite similarly to standard RESCAL when the processed data are nominal, while it is significantly more robust in the case of data corruption.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

RESCAL is a popular approach for multi-relational learning based on tensor decomposition. At the same time, RESCAL follows a L2-norm formulation that can be very sensitive against outlying data corruptions. In this work, we propose A-RESCAL: a corruption-resistant reformulation of RESCAL based on absolute projections. Specifically, we (i) show that rank-1 A-RESCAL can be cast as a combinatorial problem over antipodal binary variables and solve it exactly by exhaustive search; (ii) develop an efficient iterative algorithm for approximating the solution to rank-1 A-RESCAL; and (iii) extend our solver for general rank by means of subspace deflation. Our experimental studies on multiple benchmark datasets show that A-RESCAL performs quite similarly to standard RESCAL when the processed data are nominal, while it is significantly more robust in the case of data corruption.
具有绝对投影尺度的鲁棒多关系学习
RESCAL是一种基于张量分解的多关系学习方法。同时,RESCAL遵循l2规范公式,可以对外围数据损坏非常敏感。在这项工作中,我们提出了a -RESCAL:基于绝对预测的RESCAL的抗腐败重组。具体来说,我们(i)证明了rank-1 a - rescal可以作为对映二元变量的组合问题,并通过穷举搜索精确求解;(ii)开发一种有效的迭代算法来近似求解秩1 A-RESCAL;(3)利用子空间压缩的方法扩展了一般秩的解。我们在多个基准数据集上的实验研究表明,当处理的数据是标称数据时,A-RESCAL的性能与标准RESCAL非常相似,而在数据损坏的情况下,它的鲁棒性要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信