Classification of text to subject using LDA

Douglas A. Smith, Charles McManis
{"title":"Classification of text to subject using LDA","authors":"Douglas A. Smith, Charles McManis","doi":"10.1109/ICOSC.2015.7050791","DOIUrl":null,"url":null,"abstract":"Blekko Inc., an Internet search company, has divided web sites into subjects we call slash tags. Text from these web sites can be processed using Latent Dirichlet Allocations (LDA), to determine sets of topics for each subject. These topics can then be used to classify any text to determine the subject. We will discuss the methods used to do this; the details of the corpus used for training and testing; and results on how well the system works to classify a priori known text.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Blekko Inc., an Internet search company, has divided web sites into subjects we call slash tags. Text from these web sites can be processed using Latent Dirichlet Allocations (LDA), to determine sets of topics for each subject. These topics can then be used to classify any text to determine the subject. We will discuss the methods used to do this; the details of the corpus used for training and testing; and results on how well the system works to classify a priori known text.
使用LDA对文本进行主题分类
互联网搜索公司Blekko Inc.将网站划分为多个主题,我们称之为斜杠标签。来自这些网站的文本可以使用潜在狄利克雷分配(LDA)进行处理,以确定每个主题的主题集。然后可以使用这些主题对任何文本进行分类以确定主题。我们将讨论用于这样做的方法;用于培训和测试的语料库的详细信息;以及系统对先验已知文本进行分类的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信