Hong-Wen Chiou, Yu-Min Lee, Hsuan-Hsuan Hsiao, L. Cheng
{"title":"Thermal modeling and design on smartphones with heat pipe cooling technique","authors":"Hong-Wen Chiou, Yu-Min Lee, Hsuan-Hsuan Hsiao, L. Cheng","doi":"10.1109/ICCAD.2017.8203816","DOIUrl":null,"url":null,"abstract":"While the performance of smartphones becomes much higher, the application processor consumes considerable power. Thus, it is hard to meet thermal constraints by using conventional cooling techniques. Fortunately, since heat pipes can efficiently transfer the thermal energy from hot regions to cool regions, temperatures in hot regions can be reduced greatly. Hence, in the past three years, the heat pipe cooling techniques have been applied to smartphones by industries. However, although the time-consuming commercial simulation tools, such as ANSYS Fluent, can provide accurate thermal maps, they may lead to inefficiency during design stages. Besides, the compact thermal model for bended heat pipes is still underdeveloped. Therefore, efficient thermal simulation for smartphones with bended heat pipes should be developed for the design stage. Furthermore, the routing of bended heat pipe should be optimized to obtain more thermal energy transfer.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
While the performance of smartphones becomes much higher, the application processor consumes considerable power. Thus, it is hard to meet thermal constraints by using conventional cooling techniques. Fortunately, since heat pipes can efficiently transfer the thermal energy from hot regions to cool regions, temperatures in hot regions can be reduced greatly. Hence, in the past three years, the heat pipe cooling techniques have been applied to smartphones by industries. However, although the time-consuming commercial simulation tools, such as ANSYS Fluent, can provide accurate thermal maps, they may lead to inefficiency during design stages. Besides, the compact thermal model for bended heat pipes is still underdeveloped. Therefore, efficient thermal simulation for smartphones with bended heat pipes should be developed for the design stage. Furthermore, the routing of bended heat pipe should be optimized to obtain more thermal energy transfer.