Semi-supervised Distance Metric Learning by Quadratic Programming

Hakan Cevikalp
{"title":"Semi-supervised Distance Metric Learning by Quadratic Programming","authors":"Hakan Cevikalp","doi":"10.1109/ICPR.2010.818","DOIUrl":null,"url":null,"abstract":"This paper introduces a semi-supervised distance metric learning algorithm which uses pair-wise equivalence (similarity and dissimilarity) constraints to improve the original distance metric in lower-dimensional input spaces. We restrict ourselves to pseudo-metrics that are in quadratic forms parameterized by positive semi-definite matrices. The proposed method works in both the input space and kernel in-duced feature space, and learning distance metric is formulated as a quadratic optimization problem which returns a global optimal solution. Experimental results on several databases show that the learned distance metric improves the performances of the subsequent classification and clustering algorithms.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces a semi-supervised distance metric learning algorithm which uses pair-wise equivalence (similarity and dissimilarity) constraints to improve the original distance metric in lower-dimensional input spaces. We restrict ourselves to pseudo-metrics that are in quadratic forms parameterized by positive semi-definite matrices. The proposed method works in both the input space and kernel in-duced feature space, and learning distance metric is formulated as a quadratic optimization problem which returns a global optimal solution. Experimental results on several databases show that the learned distance metric improves the performances of the subsequent classification and clustering algorithms.
基于二次规划的半监督距离度量学习
本文介绍了一种半监督距离度量学习算法,该算法利用两两等价(相似和不相似)约束来改进低维输入空间中的原始距离度量。我们将自己限制在由正半定矩阵参数化的二次型伪度量。该方法适用于输入空间和核诱导特征空间,并将学习距离度量表述为一个返回全局最优解的二次优化问题。在多个数据库上的实验结果表明,学习到的距离度量提高了后续分类和聚类算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信