{"title":"Semi-supervised Distance Metric Learning by Quadratic Programming","authors":"Hakan Cevikalp","doi":"10.1109/ICPR.2010.818","DOIUrl":null,"url":null,"abstract":"This paper introduces a semi-supervised distance metric learning algorithm which uses pair-wise equivalence (similarity and dissimilarity) constraints to improve the original distance metric in lower-dimensional input spaces. We restrict ourselves to pseudo-metrics that are in quadratic forms parameterized by positive semi-definite matrices. The proposed method works in both the input space and kernel in-duced feature space, and learning distance metric is formulated as a quadratic optimization problem which returns a global optimal solution. Experimental results on several databases show that the learned distance metric improves the performances of the subsequent classification and clustering algorithms.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper introduces a semi-supervised distance metric learning algorithm which uses pair-wise equivalence (similarity and dissimilarity) constraints to improve the original distance metric in lower-dimensional input spaces. We restrict ourselves to pseudo-metrics that are in quadratic forms parameterized by positive semi-definite matrices. The proposed method works in both the input space and kernel in-duced feature space, and learning distance metric is formulated as a quadratic optimization problem which returns a global optimal solution. Experimental results on several databases show that the learned distance metric improves the performances of the subsequent classification and clustering algorithms.