Dependent Scalar Quantization For Neural Network Compression

Paul Haase, H. Schwarz, H. Kirchhoffer, Simon Wiedemann, Talmaj Marinc, Arturo Marbán, K. Müller, W. Samek, D. Marpe, T. Wiegand
{"title":"Dependent Scalar Quantization For Neural Network Compression","authors":"Paul Haase, H. Schwarz, H. Kirchhoffer, Simon Wiedemann, Talmaj Marinc, Arturo Marbán, K. Müller, W. Samek, D. Marpe, T. Wiegand","doi":"10.1109/ICIP40778.2020.9190955","DOIUrl":null,"url":null,"abstract":"Recent approaches to compression of deep neural networks, like the emerging standard on compression of neural networks for multimedia content description and analysis (MPEG-7 part 17), apply scalar quantization and entropy coding of the quantization indexes. In this paper we present an advanced method for quantization of neural network parameters, which applies dependent scalar quantization (DQ) or trellis-coded quantization (TCQ), and an improved context modeling for the entropy coding of the quantization indexes. We show that the proposed method achieves 5.778% bitrate reduction and virtually no loss (0.37%) of network performance in average, compared to the baseline methods of the second test model (NCTM) of MPEG-7 part 17 for relevant working points.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Recent approaches to compression of deep neural networks, like the emerging standard on compression of neural networks for multimedia content description and analysis (MPEG-7 part 17), apply scalar quantization and entropy coding of the quantization indexes. In this paper we present an advanced method for quantization of neural network parameters, which applies dependent scalar quantization (DQ) or trellis-coded quantization (TCQ), and an improved context modeling for the entropy coding of the quantization indexes. We show that the proposed method achieves 5.778% bitrate reduction and virtually no loss (0.37%) of network performance in average, compared to the baseline methods of the second test model (NCTM) of MPEG-7 part 17 for relevant working points.
神经网络压缩的相关标量量化
最近的深度神经网络压缩方法,如新兴的用于多媒体内容描述和分析的神经网络压缩标准(MPEG-7 part 17),采用量化指标的标量量化和熵编码。本文提出了一种神经网络参数量化的新方法,即依赖标量量化(DQ)或网格编码量化(TCQ),并对量化指标的熵编码进行了改进的上下文建模。我们表明,与MPEG-7 part 17的第二个测试模型(NCTM)的基线方法相比,该方法在相关工作点上实现了5.778%的比特率降低,平均几乎没有网络性能损失(0.37%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信