The power of online learning in stochastic network optimization

Longbo Huang, Xin Liu, Xiaohong Hao
{"title":"The power of online learning in stochastic network optimization","authors":"Longbo Huang, Xin Liu, Xiaohong Hao","doi":"10.1145/2591971.2591990","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics <i>a priori</i>. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two <i>Online Learning-Aided Control</i> techniques, <b>OLAC</b> and <b>OLAC2</b>, that explicitly utilize the past system information in current system control via a learning procedure called <i>dual learning</i>. We prove strong performance guarantees of the proposed algorithms: <b>OLAC</b> and <b>OLAC2</b> achieve the near-optimal [<i>O</i>(ε), <i>O</i>([log(1/ε)]<sup>2</sup>)] utility-delay tradeoff and <b>OLAC2</b> possesses an <i>O</i>(ε<sup>-2/3</sup>) convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, <b>OLAC</b> and <b>OLAC2</b> are the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time, and our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591971.2591990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics a priori. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two Online Learning-Aided Control techniques, OLAC and OLAC2, that explicitly utilize the past system information in current system control via a learning procedure called dual learning. We prove strong performance guarantees of the proposed algorithms: OLAC and OLAC2 achieve the near-optimal [O(ε), O([log(1/ε)]2)] utility-delay tradeoff and OLAC2 possesses an O-2/3) convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, OLAC and OLAC2 are the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time, and our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice.
在线学习在随机网络优化中的作用
在本文中,我们研究了在线学习在未知系统先验统计量的随机网络优化中的作用。我们感兴趣的是了解如何将信息和学习有效地整合到系统控制技术中,以及这样做的基本好处是什么。我们提出了两种在线学习辅助控制技术,OLAC和OLAC2,它们通过称为双重学习的学习过程明确地利用过去的系统信息进行当前系统控制。我们证明了所提出算法的强大性能保证:OLAC和OLAC2实现了接近最优的[O(ε), O([log(1/ε)]2)]效用-延迟权衡,OLAC2具有O(ε-2/3)收敛时间。仿真结果也证实了该算法在实际应用中的优越性能。据我们所知,OLAC和OLAC2是第一个同时拥有明确的近最优延迟保证和亚线性收敛时间的算法,我们的尝试是第一个明确地将在线学习纳入随机网络优化,并在理论和实践中展示其力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信