{"title":"A climbing movement detection system through efficient cow behavior recognition based on YOLOX and OC-SORT","authors":"Li Yu, NamHo Kim","doi":"10.30693/smj.2023.12.7.18","DOIUrl":null,"url":null,"abstract":"In this study, we propose a cow behavior recognition system based on YOLOX and OC-SORT. YOLOX detects targets in real-time and provides information on cow location and behavior. The OC-SORT module tracks cows in the video and assigns unique IDs. The quantitative analysis module analyzes the behavior and location information of cows. Experimental results show that our system demonstrates high accuracy and precision in target detection and tracking. The average precision (AP) of YOLOX was 82.2%, the average recall (AR) was 85.5%, the number of parameters was 54.15M, and the computation was 194.16GFLOPs. OC-SORT was able to maintain high-precision real-time target tracking in complex environments and occlusion situations. By analyzing changes in cow movement and frequency of mounting behavior, our system can help more accurately discern the estrus behavior of cows.","PeriodicalId":249252,"journal":{"name":"Korean Institute of Smart Media","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Institute of Smart Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30693/smj.2023.12.7.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose a cow behavior recognition system based on YOLOX and OC-SORT. YOLOX detects targets in real-time and provides information on cow location and behavior. The OC-SORT module tracks cows in the video and assigns unique IDs. The quantitative analysis module analyzes the behavior and location information of cows. Experimental results show that our system demonstrates high accuracy and precision in target detection and tracking. The average precision (AP) of YOLOX was 82.2%, the average recall (AR) was 85.5%, the number of parameters was 54.15M, and the computation was 194.16GFLOPs. OC-SORT was able to maintain high-precision real-time target tracking in complex environments and occlusion situations. By analyzing changes in cow movement and frequency of mounting behavior, our system can help more accurately discern the estrus behavior of cows.