Text Emotion Recognition Using GRU Neural Network with Attention Mechanism and Emoticon Emotions

Taiao Liu, Yajun Du, Qiaoyu Zhou
{"title":"Text Emotion Recognition Using GRU Neural Network with Attention Mechanism and Emoticon Emotions","authors":"Taiao Liu, Yajun Du, Qiaoyu Zhou","doi":"10.1145/3438872.3439094","DOIUrl":null,"url":null,"abstract":"In this study, we propose an emotion identify model called SEER, in this model, we first combined a Bi-directional Gate Recurrent Unit (Bi-GRU) network and attention mechanism to capture the emotion vectors for the aspect of input words, and second, we statistically analyze the emoticon that appears in our data set to obtain the emoticon distribution, then, use the emoticon distribution to enhance the emotion vectors. The experiment proved that combine with Attention Mechanism and Emoticon Distribution is an effective way to improve the accuracy of emotion recognition. Compared with other deep learning methods, machine learning methods, and other methods, the experimental results show that the method we posed in this paper has achieved the highest accuracy in emotion recognition.","PeriodicalId":199307,"journal":{"name":"Proceedings of the 2020 2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3438872.3439094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, we propose an emotion identify model called SEER, in this model, we first combined a Bi-directional Gate Recurrent Unit (Bi-GRU) network and attention mechanism to capture the emotion vectors for the aspect of input words, and second, we statistically analyze the emoticon that appears in our data set to obtain the emoticon distribution, then, use the emoticon distribution to enhance the emotion vectors. The experiment proved that combine with Attention Mechanism and Emoticon Distribution is an effective way to improve the accuracy of emotion recognition. Compared with other deep learning methods, machine learning methods, and other methods, the experimental results show that the method we posed in this paper has achieved the highest accuracy in emotion recognition.
基于注意机制和表情符号情感的GRU神经网络文本情感识别
在本研究中,我们提出了一种情绪识别模型SEER,在该模型中,我们首先结合双向门循环单元(Bi-GRU)网络和注意机制来捕获输入词方面的情绪向量,然后对数据集中出现的表情符号进行统计分析,获得表情符号分布,然后利用表情符号分布来增强情绪向量。实验证明,将注意机制与表情符号分布相结合是提高情绪识别准确率的有效途径。实验结果表明,与其他深度学习方法、机器学习方法和其他方法相比,本文提出的方法在情绪识别方面达到了最高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信