Robust Object Tracking Based on a Novel Feature

Wenlin Zou, S. Fei, Liuwen Li, Qi Li, Hong Lu
{"title":"Robust Object Tracking Based on a Novel Feature","authors":"Wenlin Zou, S. Fei, Liuwen Li, Qi Li, Hong Lu","doi":"10.1109/GCIS.2013.25","DOIUrl":null,"url":null,"abstract":"This paper proposes a powerful and robust local descriptor, called color Weber feature(CWF). The CWF descriptor consists of two components: color contrast ratio and color edge orientation. Inspired by Weber's Law, we propose color contrast ratio which implements hierarchical quantization of salience within an image to simulate the pattern perception of human beings. We embed the proposed CWF representation model in the mean shift tracking framework to perform object tracking. The experiments results demonstrate that CWF is a viable object representation for tracking even in the adverse scenarios such as heavy occlusions, illumination variations and similar objects interference.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a powerful and robust local descriptor, called color Weber feature(CWF). The CWF descriptor consists of two components: color contrast ratio and color edge orientation. Inspired by Weber's Law, we propose color contrast ratio which implements hierarchical quantization of salience within an image to simulate the pattern perception of human beings. We embed the proposed CWF representation model in the mean shift tracking framework to perform object tracking. The experiments results demonstrate that CWF is a viable object representation for tracking even in the adverse scenarios such as heavy occlusions, illumination variations and similar objects interference.
基于新特征的鲁棒目标跟踪
本文提出了一种强大的鲁棒局部描述子——彩色韦伯特征(CWF)。CWF描述符由两个部分组成:颜色对比度和颜色边缘方向。受韦伯定律的启发,我们提出了颜色对比度,该对比度实现了图像中显著性的分层量化,以模拟人类的模式感知。我们将所提出的CWF表示模型嵌入到均值移位跟踪框架中以实现目标跟踪。实验结果表明,即使在严重遮挡、光照变化和类似物体干扰等不利情况下,CWF也是一种可行的目标表示方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信